↓ Skip to main content

Gene Replacement and Fluorescent Labeling to Study the Functional Role of Exopolysaccharides in Bifidobacterium animalis subsp. lactis

Overview of attention for article published in Frontiers in Microbiology, July 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Gene Replacement and Fluorescent Labeling to Study the Functional Role of Exopolysaccharides in Bifidobacterium animalis subsp. lactis
Published in
Frontiers in Microbiology, July 2017
DOI 10.3389/fmicb.2017.01405
Pubmed ID
Authors

Nuria Castro-Bravo, Claudio Hidalgo-Cantabrana, Miguel A. Rodriguez-Carvajal, Patricia Ruas-Madiedo, Abelardo Margolles

Abstract

An extracellular layer of exopolysaccharides (EPS) covers the surface of some Bifidobacterium animalis subsp. lactis strains, which could be of relevance for its probiotic performance. In order to understand the functional characteristics of B. animalis subsp. lactis, two isogenic strains that differ in their EPS-producing phenotype, due to a single mutation in the gene Balat_1410, were studied. By means of a double crossover recombination strategy, successfully used for the first time in bifidobacteria, Balat_1410 in the type strain B. animalis subsp. lactis DSM10140 was replaced by a mutated gene containing a non-synonymous mutation previously associated with the appearance of a mucoid-ropy phenotype. Nuclear magnetic resonance and SEC-MALS analyses showed that the novel strain harboring the mutation acquired a ropy phenotype, due to the production of a high molecular weight (HMW)-EPS that is not produced in the wild-type strain. Fluorescence labeling of both strains with two fluorescent proteins, m-Cherry and Green Fluorescent Protein, was achieved by expressing the corresponding genes under the control of a native selected promoter (the elongation factor Tu promoter). Remarkably, qualitative and quantitative fluorescence analyses demonstrated that the ropy strain displays a lower capability to adhere to human intestinal epithelial cells. In addition, the presence of the HMW-EPS reduced the capability of the producing strain to form biofilms upon three different abiotic surfaces. This work also highlights the fact that different EPS confer variable functional characteristics to the bifidobacterial surface, which may be relevant for the performance of B. animalis subsp. lactis as a probiotic. The construction of molecular tools allowing the functional characterization of surface structures in next generation probiotics is still a challenging issue that deserves further attention, given the relevant role that such molecules must play in the interaction with the host.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 18%
Student > Bachelor 6 14%
Student > Master 5 11%
Student > Doctoral Student 3 7%
Other 3 7%
Other 8 18%
Unknown 11 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 30%
Immunology and Microbiology 7 16%
Biochemistry, Genetics and Molecular Biology 4 9%
Medicine and Dentistry 3 7%
Nursing and Health Professions 1 2%
Other 2 5%
Unknown 14 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 August 2017.
All research outputs
#14,946,971
of 22,990,068 outputs
Outputs from Frontiers in Microbiology
#13,932
of 25,058 outputs
Outputs of similar age
#188,575
of 316,990 outputs
Outputs of similar age from Frontiers in Microbiology
#345
of 539 outputs
Altmetric has tracked 22,990,068 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,058 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,990 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 539 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.