↓ Skip to main content

Genome-Wide Mapping of Transcriptional Regulation and Metabolism Describes Information-Processing Units in Escherichia coli

Overview of attention for article published in Frontiers in Microbiology, August 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (62nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-Wide Mapping of Transcriptional Regulation and Metabolism Describes Information-Processing Units in Escherichia coli
Published in
Frontiers in Microbiology, August 2017
DOI 10.3389/fmicb.2017.01466
Pubmed ID
Authors

Daniela Ledezma-Tejeida, Cecilia Ishida, Julio Collado-Vides

Abstract

In the face of changes in their environment, bacteria adjust gene expression levels and produce appropriate responses. The individual layers of this process have been widely studied: the transcriptional regulatory network describes the regulatory interactions that produce changes in the metabolic network, both of which are coordinated by the signaling network, but the interplay between them has never been described in a systematic fashion. Here, we formalize the process of detection and processing of environmental information mediated by individual transcription factors (TFs), utilizing a concept termed genetic sensory response units (GENSOR units), which are composed of four components: (1) a signal, (2) signal transduction, (3) genetic switch, and (4) a response. We used experimentally validated data sets from two databases to assemble a GENSOR unit for each of the 189 local TFs of Escherichia coli K-12 contained in the RegulonDB database. Further analysis suggested that feedback is a common occurrence in signal processing, and there is a gradient of functional complexity in the response mediated by each TF, as opposed to a one regulator/one pathway rule. Finally, we provide examples of other GENSOR unit applications, such as hypothesis generation, detailed description of cellular decision making, and elucidation of indirect regulatory mechanisms.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 26%
Student > Bachelor 5 13%
Student > Ph. D. Student 5 13%
Professor 3 8%
Student > Postgraduate 3 8%
Other 6 15%
Unknown 7 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 28%
Agricultural and Biological Sciences 7 18%
Immunology and Microbiology 3 8%
Computer Science 3 8%
Medicine and Dentistry 3 8%
Other 3 8%
Unknown 9 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 September 2017.
All research outputs
#7,479,651
of 22,996,001 outputs
Outputs from Frontiers in Microbiology
#8,088
of 25,075 outputs
Outputs of similar age
#119,605
of 317,591 outputs
Outputs of similar age from Frontiers in Microbiology
#251
of 522 outputs
Altmetric has tracked 22,996,001 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 25,075 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,591 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.
We're also able to compare this research output to 522 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.