↓ Skip to main content

Genome Plasticity and Polymorphisms in Critical Genes Correlate with Increased Virulence of Dutch Outbreak-Related Coxiella burnetii Strains

Overview of attention for article published in Frontiers in Microbiology, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome Plasticity and Polymorphisms in Critical Genes Correlate with Increased Virulence of Dutch Outbreak-Related Coxiella burnetii Strains
Published in
Frontiers in Microbiology, August 2017
DOI 10.3389/fmicb.2017.01526
Pubmed ID
Authors

Runa Kuley, Eric Kuijt, Mari A. Smits, Hendrik I. J. Roest, Hilde E. Smith, Alex Bossers

Abstract

Coxiella burnetii is an obligate intracellular bacterium and the etiological agent of Q fever. During 2007-2010 the largest Q fever outbreak ever reported occurred in The Netherlands. It is anticipated that strains from this outbreak demonstrated an increased zoonotic potential as more than 40,000 individuals were assumed to be infected. The acquisition of novel genetic factors by these C. burnetii outbreak strains, such as virulence-related genes, has frequently been proposed and discussed, but is not proved yet. In the present study, the whole genome sequence of several Dutch strains (CbNL01 and CbNL12 genotypes), a few additionally selected strains from different geographical locations and publicly available genome sequences were used for a comparative bioinformatics approach. The study focuses on the identification of specific genetic differences in the outbreak related CbNL01 strains compared to other C. burnetii strains. In this approach we investigated the phylogenetic relationship and genomic aspects of virulence and host-specificity. Phylogenetic clustering of whole genome sequences showed a genotype-specific clustering that correlated with the clustering observed using Multiple Locus Variable-number Tandem Repeat Analysis (MLVA). Ortholog analysis on predicted genes and single nucleotide polymorphism (SNP) analysis of complete genome sequences demonstrated the presence of genotype-specific gene contents and SNP variations in C. burnetii strains. It also demonstrated that the currently used MLVA genotyping methods are highly discriminatory for the investigated outbreak strains. In the fully reconstructed genome sequence of the Dutch outbreak NL3262 strain of the CbNL01 genotype, a relatively large number of transposon-linked genes were identified as compared to the other published complete genome sequences of C. burnetii. Additionally, large numbers of SNPs in its membrane proteins and predicted virulence-associated genes were identified in all Dutch outbreak strains compared to the NM reference strain and other strains of the CbNL12 genotype. The presence of large numbers of transposable elements and mutated genes, thereof most likely resulted in high level of genome rearrangements and genotype-specific pathogenicity of outbreak strains. Thus, the epidemic potential of Dutch outbreak strains could be linked to increased genome plasticity and mutations in critical genes involved in virulence and the evasion of the host immune system.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 20%
Researcher 6 17%
Professor > Associate Professor 3 9%
Student > Master 3 9%
Student > Bachelor 2 6%
Other 5 14%
Unknown 9 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 20%
Agricultural and Biological Sciences 5 14%
Veterinary Science and Veterinary Medicine 4 11%
Immunology and Microbiology 3 9%
Medicine and Dentistry 3 9%
Other 2 6%
Unknown 11 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 August 2017.
All research outputs
#14,950,579
of 22,997,544 outputs
Outputs from Frontiers in Microbiology
#13,945
of 25,078 outputs
Outputs of similar age
#188,324
of 318,015 outputs
Outputs of similar age from Frontiers in Microbiology
#335
of 528 outputs
Altmetric has tracked 22,997,544 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,078 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,015 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 528 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.