↓ Skip to main content

High Spatial and Temporal Variations of Microbial Community along the Southern Catfish Gastrointestinal Tract: Insights into Dynamic Food Digestion

Overview of attention for article published in Frontiers in Microbiology, August 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

blogs
1 blog
twitter
2 X users

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
High Spatial and Temporal Variations of Microbial Community along the Southern Catfish Gastrointestinal Tract: Insights into Dynamic Food Digestion
Published in
Frontiers in Microbiology, August 2017
DOI 10.3389/fmicb.2017.01531
Pubmed ID
Authors

Zhimin Zhang, Dapeng Li, Mohamed M. Refaey, Weitong Xu

Abstract

The fish intestinal microbiota is affected by dietary shifts or diet-related seasonal fluctuations making it highly variable and dynamic. It assists with the digestion and absorption of food that is a common, yet dynamic process. However, fundamental dynamics of microbial ecology associated with food digestion in intestine and stomach are poorly understood in fish. We selected the southern catfish, Silurus meridionalis, as the targeted species, owing to its foraging behavior with a large meal that can assure clear periodic rhythms in food digestion, to study spatial variations of the microbial community along the gastrointestinal (GI) tract. We further evaluated temporal microbial dynamics by collecting GI tract samples at time intervals 03, 12, and 24h after feeding. High-throughput sequencing results showed higher microbial diversity in the stomach than in the intestine and distinguishable community structures between stomach and intestine. Firmicutes were dominated by both Clostridium and unclassified Clostridiaceae, which was the most abundant taxon in the stomach, whereas Fusobacteria were dominated by Cetobacterium, which prevailed in the intestine. Firmicutes was significantly increased and Fusobacteria was decreased after feeding. Furthermore, inter-stomach microbial variability was greater than inter-intestine microbial variability. These results demonstrate that GI microbial assemblies are specific per anatomical site and are highly dynamic during food digestion, indicating that digestive status and/or sampling time are factors potentially influencing the microbial compositions. Furthermore, the finding of high spatial and temporal variations of the microbial community along the GI tract suggests limitations of single sampling regime to study food-derived microbial ecology.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 32%
Researcher 9 18%
Student > Master 6 12%
Student > Doctoral Student 3 6%
Professor 2 4%
Other 4 8%
Unknown 10 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 19 38%
Biochemistry, Genetics and Molecular Biology 6 12%
Environmental Science 2 4%
Nursing and Health Professions 2 4%
Chemical Engineering 1 2%
Other 7 14%
Unknown 13 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 August 2017.
All research outputs
#4,418,587
of 24,885,505 outputs
Outputs from Frontiers in Microbiology
#4,108
of 28,434 outputs
Outputs of similar age
#71,746
of 322,961 outputs
Outputs of similar age from Frontiers in Microbiology
#140
of 528 outputs
Altmetric has tracked 24,885,505 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 28,434 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 322,961 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 528 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.