↓ Skip to main content

Fermentative Bacteria Influence the Competition between Denitrifiers and DNRA Bacteria

Overview of attention for article published in Frontiers in Microbiology, September 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • High Attention Score compared to outputs of the same age and source (87th percentile)

Mentioned by

blogs
1 blog
twitter
11 X users

Citations

dimensions_citation
70 Dimensions

Readers on

mendeley
97 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fermentative Bacteria Influence the Competition between Denitrifiers and DNRA Bacteria
Published in
Frontiers in Microbiology, September 2017
DOI 10.3389/fmicb.2017.01684
Pubmed ID
Authors

Eveline M. van den Berg, Marina P. Elisário, J. Gijs Kuenen, Robbert Kleerebezem, Mark C. M. van Loosdrecht

Abstract

Denitrification and dissimilatory reduction to ammonium (DNRA) are competing nitrate-reduction processes that entail important biogeochemical consequences for nitrogen retention/removal in natural and man-made ecosystems. The nature of the available carbon source and electron donor have been suggested to play an important role on the outcome of this microbial competition. In this study, the influence of lactate as fermentable carbon source on the competition for nitrate was investigated for varying ratios of lactate and nitrate in the influent (Lac/N ratio). The study was conducted in an open chemostat culture, enriched from activated sludge, under strict anoxia. The mechanistic explanation of the conversions observed was based on integration of results from specific batch tests with biomass from the chemostat, molecular analysis of the biomass enriched, and a computational model. At high Lac/N ratio (2.97 mol/mol) both fermentative and respiratory nitrate reduction to ammonium occurred, coupled to partial oxidation of lactate to acetate, and to acetate oxidation respectively. Remaining lactate was fermented to propionate and acetate. At a decreased Lac/N ratio (1.15 mol/mol), the molar percentage of nitrate reduced to ammonium decreased to 58%, even though lactate was supplied in adequate amounts for full ammonification and nitrate remained the growth limiting compound. Data evaluation at this Lac/N ratio suggested conversions were comparable to the higher Lac/N ratio, except for lactate oxidation to acetate that was coupled to denitrification instead of ammonification. Respiratory DNRA on acetate was likely catalyzed by two Geobacter species related to G. luticola and G. lovleyi. Two Clostridiales members were likely responsible for lactate fermentation and partial lactate fermentation to acetate coupled to fermentative DNRA. An organism related to Propionivibrio militaris was identified as the organism likely responsible for denitrification. The results of this study clearly show that not only the ratio of available substrates, but also the nature of the electron donor influences the outcome of competition between DNRA and denitrification. Apparently, fermentative bacteria are competitive for the electron donor and thereby alter the ratio of available substrates for nitrate reduction.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 97 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 97 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 27 28%
Researcher 17 18%
Student > Master 11 11%
Student > Bachelor 7 7%
Other 5 5%
Other 9 9%
Unknown 21 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 16%
Environmental Science 16 16%
Biochemistry, Genetics and Molecular Biology 10 10%
Immunology and Microbiology 5 5%
Engineering 5 5%
Other 14 14%
Unknown 31 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 September 2020.
All research outputs
#2,421,468
of 23,001,641 outputs
Outputs from Frontiers in Microbiology
#1,959
of 25,092 outputs
Outputs of similar age
#48,191
of 315,613 outputs
Outputs of similar age from Frontiers in Microbiology
#65
of 512 outputs
Altmetric has tracked 23,001,641 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 25,092 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has done particularly well, scoring higher than 92% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,613 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 512 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 87% of its contemporaries.