↓ Skip to main content

Composted Cattle Manure Increases Microbial Activity and Soil Fertility More Than Composted Swine Manure in a Submerged Rice Paddy

Overview of attention for article published in Frontiers in Microbiology, September 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

blogs
1 blog
twitter
1 X user
wikipedia
3 Wikipedia pages

Citations

dimensions_citation
150 Dimensions

Readers on

mendeley
240 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Composted Cattle Manure Increases Microbial Activity and Soil Fertility More Than Composted Swine Manure in a Submerged Rice Paddy
Published in
Frontiers in Microbiology, September 2017
DOI 10.3389/fmicb.2017.01702
Pubmed ID
Authors

Suvendu Das, Seung Tak Jeong, Subhasis Das, Pil Joo Kim

Abstract

Livestock waste composts with minimum inorganic fertilizer as a soil amendment in low-input intensive farming are a feasible agricultural practice to improve soil fertility and productivity and to mitigate soil degradation. The key benefits of the practice rely on the activities of soil microorganisms. However, the role of different livestock composts [composted cattle manure (CCM) vs. composted swine manure (CSM)] on soil microbes, their activities and the overall impact on soil fertility and productivity in a flooded paddy remains elusive. This study compares the effectiveness of CCM and CSM amendment on bacterial communities, activities, nutrient availability, and crop yield in a flooded rice cropping system. We used deep 16S amplicon sequencing and soil enzyme activities to decipher bacterial communities and activities, respectively. Both CCM and CSM amendment significantly increased soil pH, nutrient availability (C, N, and P), microbial biomass, soil enzyme activities indicative for C and N cycles, aboveground plant biomass and grain yield. And the increase in above-mentioned parameters was more prominent in the CCM treatment compared to the CSM treatment. The CCM amendment increased species richness and stimulated copiotrophic microbial groups (Alphaproteobacteria, Betaproteobacteria, and Firmicutes) which are often involved in degradation of complex organic compounds. Moreover, some dominant species (e.g., Azospirillum zeae, Azospirillum halopraeferens, Azospirillum rugosum, Clostridium alkalicellulosi, Clostridium caenicola, Clostridium termitidis, Clostridium cellulolyticum, Magnetospirillum magnetotacticum, Pleomorphomonas oryzae, Variovorax boronicumulans, Pseudomonas xanthomarina, Pseudomonas stutzeri, and Bacillus niacini) which have key roles in plant growth promotion and/or lignocellulose degradation were enhanced under CCM treatment compared to CSM treatment. Multivariate analysis revealed that soil pH and available carbon (C) and nitrogen (N) were the major, while total organic carbon (TOC), total nitrogen (TN), and available phosphorus (P) were the minor drivers of variation in bacterial communities. Overall, our observations suggest that CCM amendment is better than CSM amendment to improve soil fertility and crop yield in a submerged rice cropping system.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 240 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 240 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 35 15%
Researcher 34 14%
Student > Master 21 9%
Student > Bachelor 20 8%
Student > Doctoral Student 19 8%
Other 30 13%
Unknown 81 34%
Readers by discipline Count As %
Agricultural and Biological Sciences 79 33%
Environmental Science 28 12%
Engineering 11 5%
Biochemistry, Genetics and Molecular Biology 8 3%
Computer Science 5 2%
Other 12 5%
Unknown 97 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 September 2023.
All research outputs
#2,716,818
of 23,001,641 outputs
Outputs from Frontiers in Microbiology
#2,325
of 25,092 outputs
Outputs of similar age
#52,611
of 315,613 outputs
Outputs of similar age from Frontiers in Microbiology
#83
of 512 outputs
Altmetric has tracked 23,001,641 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 25,092 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has done particularly well, scoring higher than 90% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,613 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 512 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.