↓ Skip to main content

Chasing after Non-cyanobacterial Nitrogen Fixation in Marine Pelagic Environments

Overview of attention for article published in Frontiers in Microbiology, September 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users
facebook
1 Facebook page

Readers on

mendeley
116 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Chasing after Non-cyanobacterial Nitrogen Fixation in Marine Pelagic Environments
Published in
Frontiers in Microbiology, September 2017
DOI 10.3389/fmicb.2017.01736
Pubmed ID
Authors

Pia H. Moisander, Mar Benavides, Sophie Bonnet, Ilana Berman-Frank, Angelicque E. White, Lasse Riemann

Abstract

Traditionally, cyanobacterial activity in oceanic photic layers was considered responsible for the marine pelagic dinitrogen (N2) fixation. Other potentially N2-fixing bacteria and archaea have also been detected in the pelagic water column, however, the activity and importance of these non-cyanobacterial diazotrophs (NCDs) remain poorly constrained. In this perspective we summarize the N2 fixation rates from recently published studies on photic and aphotic layers that have been attributed to NCD activity via parallel molecular measurements, and discuss the status, challenges, and data gaps in estimating non-cyanobacterial N2 fixation NCNF in the ocean. Rates attributed to NCNF have generally been near the detection limit thus far (<1 nmol N L(-1) d(-1)). Yet, if considering the large volume of the dark ocean, even low rates of NCNF could make a significant contribution to the new nitrogen input to the ocean. The synthesis here shows that nifH transcription data for NCDs have been reported in only a few studies where N2 fixation rates were detected in the absence of diazotrophic cyanobacteria. In addition, high apparent diversity and regional variability in the NCDs complicate investigations of these communities. Future studies should focus on further investigating impacts of environmental drivers including oxygen, dissolved organic matter, and dissolved inorganic nitrogen on NCNF. Describing the ecology of NCDs and accurately measuring NCNF rates, are critical for a future evaluation of the contribution of NCNF to the marine nitrogen budget.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 116 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 116 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 23 20%
Student > Ph. D. Student 22 19%
Student > Master 16 14%
Student > Bachelor 12 10%
Professor 6 5%
Other 13 11%
Unknown 24 21%
Readers by discipline Count As %
Environmental Science 26 22%
Agricultural and Biological Sciences 25 22%
Earth and Planetary Sciences 13 11%
Biochemistry, Genetics and Molecular Biology 10 9%
Immunology and Microbiology 4 3%
Other 7 6%
Unknown 31 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 June 2018.
All research outputs
#14,363,636
of 23,001,641 outputs
Outputs from Frontiers in Microbiology
#12,539
of 25,092 outputs
Outputs of similar age
#175,684
of 316,058 outputs
Outputs of similar age from Frontiers in Microbiology
#303
of 519 outputs
Altmetric has tracked 23,001,641 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,092 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,058 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 519 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.