↓ Skip to main content

Gene Expression Response of Salmonella enterica Serotype Enteritidis Phage Type 8 to Subinhibitory Concentrations of the Plant-Derived Compounds Trans-Cinnamaldehyde and Eugenol

Overview of attention for article published in Frontiers in Microbiology, September 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (63rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
4 X users
facebook
1 Facebook page

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
82 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Gene Expression Response of Salmonella enterica Serotype Enteritidis Phage Type 8 to Subinhibitory Concentrations of the Plant-Derived Compounds Trans-Cinnamaldehyde and Eugenol
Published in
Frontiers in Microbiology, September 2017
DOI 10.3389/fmicb.2017.01828
Pubmed ID
Authors

Anup Kollanoor Johny, Jonathan G. Frye, Annie Donoghue, Dan J. Donoghue, Steffen Porwollik, Michael McClelland, Kumar Venkitanarayanan

Abstract

Background:Salmonella Enteritidis phage type 8 (PT8) is a major poultry-associated Salmonella strain implicated in foodborne outbreaks in the United States. We previously reported that two plant-derived compounds generally recognized as safe (GRAS), trans-cinnamaldehyde (TC), and eugenol (EG), significantly reduced S. Enteritidis colonization in broiler and layer chickens. To elucidate potential PT8 genes affected by TC and EG during colonization, a whole-genome microarray analysis of the bacterium treated with TC and EG was conducted. Results:S. Enteritidis PT8 was grown in Luria-Bertani broth at 37°C to an OD600 of ~0.5. Subinhibitory concentrations (SICs; concentration that does not inhibit bacterial growth) of TC (0.01%; 0.75 mM) or EG (0.04%; 2.46 mM) were then added to the culture. S. Enteritidis PT8 RNA was extracted before and 30 min after TC or EG addition. Labeled cDNA from three replicate experiments was subsequently hybridized to a microarray of over 99% of S. Enteritidis PT4 genes, and the hybridization signals were quantified. The plant-derived compounds down-regulated (P < 0.005) expression of S. Enteritidis PT8 genes involved in flagellar motility, regulation of the Salmonella Pathogenicity Island 1, and invasion of intestinal epithelial cells. TC and EG also suppressed transcription of genes encoding multiple transport systems and outer membrane proteins. Moreover, several metabolic and biosynthetic pathways in the pathogen were down-regulated during exposure to the plant-derived compounds. Both TC and EG stimulated the transcription of heat shock genes, such as dnaK, dnaJ, ibpB, and ibpA in S. Enteritidis PT8 (P < 0.005). The results obtained from microarray were validated using a quantitative real-time PCR. Conclusion: The plant-derived compounds TC and EG exert antimicrobial effects on S. Enteritidis PT8 by affecting multiple genes, including those associated with virulence, colonization, cell membrane composition, and transport systems.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 82 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 82 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 16 20%
Student > Master 11 13%
Student > Ph. D. Student 10 12%
Professor 7 9%
Student > Bachelor 5 6%
Other 14 17%
Unknown 19 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 23 28%
Biochemistry, Genetics and Molecular Biology 8 10%
Veterinary Science and Veterinary Medicine 7 9%
Immunology and Microbiology 7 9%
Pharmacology, Toxicology and Pharmaceutical Science 3 4%
Other 12 15%
Unknown 22 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 November 2017.
All research outputs
#7,204,029
of 23,005,189 outputs
Outputs from Frontiers in Microbiology
#7,548
of 25,097 outputs
Outputs of similar age
#115,548
of 320,421 outputs
Outputs of similar age from Frontiers in Microbiology
#234
of 513 outputs
Altmetric has tracked 23,005,189 research outputs across all sources so far. This one has received more attention than most of these and is in the 68th percentile.
So far Altmetric has tracked 25,097 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,421 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.
We're also able to compare this research output to 513 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.