↓ Skip to main content

Extracellular Polymeric Substance Production and Aggregated Bacteria Colonization Influence the Competition of Microbes in Biofilms

Overview of attention for article published in Frontiers in Microbiology, September 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
114 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Extracellular Polymeric Substance Production and Aggregated Bacteria Colonization Influence the Competition of Microbes in Biofilms
Published in
Frontiers in Microbiology, September 2017
DOI 10.3389/fmicb.2017.01865
Pubmed ID
Authors

Pahala G. Jayathilake, Saikat Jana, Steve Rushton, David Swailes, Ben Bridgens, Tom Curtis, Jinju Chen

Abstract

The production of extracellular polymeric substance (EPS) is important for the survival of biofilms. However, EPS production is costly for bacteria and the bacterial strains that produce EPS (EPS+) grow in the same environment as non-producers (EPS-) leading to competition between these strains for nutrients and space. The outcome of this competition is likely to be dependent on factors such as initial attachment, EPS production rate, ambient nutrient levels and quorum sensing. We use an Individual-based Model (IbM) to study the competition between EPS+ and EPS- strains by varying the nature of initial colonizers which can either be in the form of single cells or multicellular aggregates. The microbes with EPS+ characteristics obtain a competitive advantage if they initially colonize the surface as smaller aggregates and are widely spread-out between the cells of EPS-, when both are deposited on the substratum. Furthermore, the results show that quorum sensing-regulated EPS production may significantly reduce the fitness of EPS producers when they initially deposit as aggregates. The results provide insights into how the distribution of bacterial aggregates during initial colonization could be a deciding factor in the competition among different strains in biofilms.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 114 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 114 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 23 20%
Student > Ph. D. Student 15 13%
Student > Bachelor 11 10%
Researcher 10 9%
Professor > Associate Professor 4 4%
Other 11 10%
Unknown 40 35%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 15%
Biochemistry, Genetics and Molecular Biology 11 10%
Engineering 11 10%
Environmental Science 9 8%
Immunology and Microbiology 5 4%
Other 17 15%
Unknown 44 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 October 2017.
All research outputs
#20,449,496
of 23,005,189 outputs
Outputs from Frontiers in Microbiology
#22,682
of 25,097 outputs
Outputs of similar age
#280,005
of 320,771 outputs
Outputs of similar age from Frontiers in Microbiology
#441
of 513 outputs
Altmetric has tracked 23,005,189 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,097 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,771 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 513 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.