↓ Skip to main content

Adaptation of Methanogenic Inocula to Anaerobic Digestion of Maize Silage

Overview of attention for article published in Frontiers in Microbiology, September 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
45 Dimensions

Readers on

mendeley
93 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Adaptation of Methanogenic Inocula to Anaerobic Digestion of Maize Silage
Published in
Frontiers in Microbiology, September 2017
DOI 10.3389/fmicb.2017.01881
Pubmed ID
Authors

Martyna Wojcieszak, Adam Pyzik, Krzysztof Poszytek, Pawel S. Krawczyk, Adam Sobczak, Leszek Lipinski, Otton Roubinek, Jacek Palige, Aleksandra Sklodowska, Lukasz Drewniak

Abstract

A well-balanced microbial consortium is crucial for efficient biogas production. In turn, one of a major factor that influence on the structure of anaerobic digestion (AD) consortium is a source of microorganisms which are used as an inoculum. This study evaluated the influence of inoculum sources (with various origin) on adaptation of a biogas community and the efficiency of the biomethanization of maize silage. As initial inocula for AD of maize silage the samples from: (i) an agricultural biogas plant (ABP) which utilizes maize silage as a main substrate, (ii) cattle slurry (CS), which contain elevated levels of lignocelluloses materials, and (iii) raw sewage sludge (RSS) with low content of plant origin materials were used. The adaptation of methanogenic consortia was monitored during a series of passages, and the functionality of the adapted consortia was verified through start-up operation of AD in two-stage reactors. During the first stages of the adaptation phase, methanogenic consortia occurred very slowly, and only after several passages did the microbial community adapts to allow production of biogas with high methane content. The ABP consortium revealed highest biogas production in the adaptation and in the start-up process. The biodiversity dynamics monitored during adaptation and start-up process showed that community profile changed in a similar direction in three studied consortia. Native communities were very distinct to each other, while at the end of the Phase II of the start-up process microbial diversity profile was similar in all consortia. All adopted bacterial communities were dominated by representatives of Porphyromonadaceae, Rikenellaceae, Ruminococcaceae, and Synergistaceae. A shift from low acetate-preferring acetoclastic Methanosaetaceae (ABP and RSS) and/or hydrogenotrophic Archaea, e.g., Methanomicrobiaceae (CS) prevailing in the inoculum samples to larger populations of high acetate-preferring acetoclastic Methanosarcinaceae was observed by the end of the experiment. As a result, three independent, functional communities that syntrophically produced methane from acetate (primarily) and H2/CO2, methanol and methylamines were adapted. This study provides new insights into the specific process by which different inocula sampled from typical methanogenic environments that are commonly used to initiate industrial installations gradually adapted to allow biogas production from maize silage.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 93 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 93 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 20%
Researcher 17 18%
Student > Master 12 13%
Other 6 6%
Student > Doctoral Student 6 6%
Other 6 6%
Unknown 27 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 16%
Environmental Science 13 14%
Engineering 11 12%
Biochemistry, Genetics and Molecular Biology 9 10%
Chemical Engineering 5 5%
Other 6 6%
Unknown 34 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 October 2017.
All research outputs
#17,916,739
of 23,003,906 outputs
Outputs from Frontiers in Microbiology
#17,392
of 25,097 outputs
Outputs of similar age
#229,773
of 321,004 outputs
Outputs of similar age from Frontiers in Microbiology
#370
of 513 outputs
Altmetric has tracked 23,003,906 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,097 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,004 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 513 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.