↓ Skip to main content

Generation of Persister Cells of Pseudomonas aeruginosa and Staphylococcus aureus by Chemical Treatment and Evaluation of Their Susceptibility to Membrane-Targeting Agents

Overview of attention for article published in Frontiers in Microbiology, October 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
171 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Generation of Persister Cells of Pseudomonas aeruginosa and Staphylococcus aureus by Chemical Treatment and Evaluation of Their Susceptibility to Membrane-Targeting Agents
Published in
Frontiers in Microbiology, October 2017
DOI 10.3389/fmicb.2017.01917
Pubmed ID
Authors

Lucia Grassi, Mariagrazia Di Luca, Giuseppantonio Maisetta, Andrea C. Rinaldi, Semih Esin, Andrej Trampuz, Giovanna Batoni

Abstract

Persister cells (PCs) are a subset of dormant, phenotypic variants of regular bacteria, highly tolerant to antibiotics. Generation of PCs in vivo may account for the recalcitrance of most chronic infections to antimicrobial treatment and demands for the identification of new antimicrobial agents able to target such cells. The present study explored the possibility to obtain in vitro PCs of Pseudomonas aeruginosa and Staphylococcus aureus at high efficiency through chemical treatment, and to test their susceptibility to structurally different antimicrobial peptides (AMPs) and two clinically used peptide-based antibiotics, colistin and daptomycin. The main mechanism of action of these molecules (i.e., membrane-perturbing activity) renders them potential candidates to act against dormant cells. Exposure of stationary-phase cultures to optimized concentrations of the uncoupling agent cyanide m-chlorophenylhydrazone (CCCP) was able to generate at high efficiency PCs exhibiting an antibiotic-tolerant phenotype toward different classes of antibiotics. The metabolic profile of CCCP-treated bacteria was investigated by monitoring bacterial heat production through isothermal microcalorimetry and by evaluating oxidoreductase activity by flow cytometry. CCCP-pretreated bacteria of both bacterial species underwent a substantial decrease in heat production and oxidoreductase activity, as compared to the untreated controls. After CCCP removal, induced persisters showed a delay in heat production that correlated with a lag phase before resumption of normal growth. The metabolic reactivation of bacteria coincided with their reversion to an antibiotic-sensitive phenotype. Interestingly, PCs generated by CCCP treatment resulted highly sensitive to three different membrane-targeting AMPs at levels comparable to those of CCCP-untreated bacteria. Colistin was also highly active against PCs of P. aeruginosa, while daptomycin killed PCs of S. aureus only at concentrations 32 to 64-fold higher than those of the tested AMPs. In conclusion, CCCP treatment was demonstrated to be a suitable method to generate in vitro PCs of medically important bacterial species at high efficiency. Importantly, unlike conventional antibiotics, structurally different AMPs were able to eradicate PCs suggesting that such molecules might represent valid templates for the development of new antimicrobials active against persisters.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 171 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 171 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 41 24%
Researcher 24 14%
Student > Bachelor 22 13%
Student > Master 18 11%
Student > Doctoral Student 12 7%
Other 18 11%
Unknown 36 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 37 22%
Immunology and Microbiology 31 18%
Agricultural and Biological Sciences 27 16%
Chemistry 7 4%
Chemical Engineering 4 2%
Other 20 12%
Unknown 45 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 October 2017.
All research outputs
#13,570,909
of 23,005,189 outputs
Outputs from Frontiers in Microbiology
#10,635
of 25,097 outputs
Outputs of similar age
#162,879
of 323,110 outputs
Outputs of similar age from Frontiers in Microbiology
#289
of 531 outputs
Altmetric has tracked 23,005,189 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,097 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,110 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 531 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.