↓ Skip to main content

Antimicrobial and Antibiofilm Effects of Human Amniotic/Chorionic Membrane Extract on Streptococcus pneumoniae

Overview of attention for article published in Frontiers in Microbiology, October 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (66th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
3 X users
patent
1 patent

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Antimicrobial and Antibiofilm Effects of Human Amniotic/Chorionic Membrane Extract on Streptococcus pneumoniae
Published in
Frontiers in Microbiology, October 2017
DOI 10.3389/fmicb.2017.01948
Pubmed ID
Authors

Mukesh K. Yadav, Yoon Y. Go, Shin Hye Kim, Sung-Won Chae, Jae-Jun Song

Abstract

Background:Streptococcus pneumoniae colonize the human nasopharynx in the form of biofilms. The biofilms act as bacterial reservoirs and planktonic bacteria from these biofilms can migrate to other sterile anatomical sites to cause pneumonia, otitis media (OM), bacteremia and meningitis. Human amniotic membrane contains numerous growth factors and antimicrobial activity; however, these have not been studied in detail. In this study, we prepared amniotic membrane extract and chorionic membrane extract (AME/CME) and evaluated their antibacterial and antibiofilm activities against S. pneumoniae using an in vitro biofilm model and in vivo OM rat model. Materials and Methods: The AME/CME were prepared and protein was quantified using DC(TM) (detergent compatible) method. The minimum inhibitory concentrations were determined using broth dilution method, and the synergistic effect of AME/CME with Penicillin-streptomycin was detected checkerboard. The in vitro biofilm and in vivo colonization of S. pneumoniae were studied using microtiter plate assay and OM rat model, respectively. The AME/CME-treated biofilms were examined using scanning electron microscope and confocal microscopy. To examine the constituents of AME/CME, we determined the proteins and peptides of AME/CME using tandem mass tag-based quantitative mass spectrometry. Results: AME/CME treatment significantly (p < 0.05) inhibited S. pneumoniae growth in planktonic form and in biofilms. Combined application of AME/CME and Penicillin-streptomycin solution had a synergistic effect against S. pneumoniae. Biofilms grown with AME/CME were thin, scattered, and unorganized. AME/CME effectively eradicated pre-established pneumococci biofilms and has a bactericidal effect. AME treatment significantly (p < 0.05) reduced bacterial colonization in the rat middle ear. The proteomics analysis revealed that the AME/CME contains hydrolase, ribonuclease, protease, and other antimicrobial proteins and peptides. Conclusion: AME/CME inhibits S. pneumoniae growth in the planktonic and biofilm states via its antimicrobial proteins and peptides. AME/CME are non-cytotoxic, natural human product; therefore, they may be used alone or with antibiotics to treat S. pneumoniae infections.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 16%
Researcher 6 14%
Student > Bachelor 4 9%
Student > Postgraduate 3 7%
Other 2 5%
Other 4 9%
Unknown 18 41%
Readers by discipline Count As %
Immunology and Microbiology 6 14%
Biochemistry, Genetics and Molecular Biology 6 14%
Medicine and Dentistry 5 11%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Nursing and Health Professions 2 5%
Other 7 16%
Unknown 16 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 August 2020.
All research outputs
#6,488,436
of 23,007,053 outputs
Outputs from Frontiers in Microbiology
#6,627
of 25,107 outputs
Outputs of similar age
#106,422
of 324,389 outputs
Outputs of similar age from Frontiers in Microbiology
#217
of 522 outputs
Altmetric has tracked 23,007,053 research outputs across all sources so far. This one has received more attention than most of these and is in the 70th percentile.
So far Altmetric has tracked 25,107 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 72% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,389 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.
We're also able to compare this research output to 522 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.