↓ Skip to main content

Synergistic Response of Rifampicin with Hydroperoxides on Mycobacterium: A Mechanistic Study

Overview of attention for article published in Frontiers in Microbiology, October 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Synergistic Response of Rifampicin with Hydroperoxides on Mycobacterium: A Mechanistic Study
Published in
Frontiers in Microbiology, October 2017
DOI 10.3389/fmicb.2017.02075
Pubmed ID
Authors

Yesha S. Patel, Sarika Mehra

Abstract

Prolonged chemotherapy as well as rapid development of antimicrobial resistance are two of the major concerns for treatment of mycobacterial infections. To enhance the effectiveness of current drug regimens, search for compounds having synergistic interaction with anti-mycobacterial drugs has become indispensable. Here, we have investigated the intervention by oxidative stress, a major factor in mycobacterial pathogenesis, in combination with rifampicin (RIF), a first-line drug used against Mycobacterium tuberculosis. We have observed that a sub-inhibitory concentration of cumene hydroperoxide (CHP), a hydrophobic oxidant, synergistically reduced the minimum inhibitory concentration of RIF by fourfold, with a Fractional Inhibitory Concentration Index (FICI) of 0.45. Also, this interaction was found to be robust and synergistic against different strains of M. smegmatis as well as on M. bovis BCG, with FICI ranging from 0.3 to 0.6. Various physiological, biochemical and molecular parameters were explored to understand the mechanism of synergy. It was observed that increased membrane permeability owing to the presence of the oxidant, led to higher uptake of the drug. Moreover, downregulation of the hydroperoxide reductases by RIF, a transcriptional inhibitor, prevented quenching of the reactive oxygen species produced in the presence of CHP. The lipid soluble reactive species triggered autocatalytic lipid peroxidation (LPO), observed here as extensive membrane damage eventually leading to growth inhibition. Furthermore, it was seen that in combination with hydrogen peroxide (H2O2), the effect was only additive, establishing LPO as a key aspect leading toward synergism. To conclude, this work suggests that targeting the bacterial membrane by a radical species can have a significant impact on the treatment of tuberculosis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 18%
Student > Ph. D. Student 6 15%
Researcher 5 13%
Student > Bachelor 4 10%
Other 2 5%
Other 2 5%
Unknown 14 35%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 3 8%
Biochemistry, Genetics and Molecular Biology 3 8%
Agricultural and Biological Sciences 3 8%
Medicine and Dentistry 2 5%
Engineering 2 5%
Other 8 20%
Unknown 19 48%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 November 2017.
All research outputs
#14,959,314
of 23,008,860 outputs
Outputs from Frontiers in Microbiology
#13,970
of 25,108 outputs
Outputs of similar age
#194,677
of 328,935 outputs
Outputs of similar age from Frontiers in Microbiology
#354
of 555 outputs
Altmetric has tracked 23,008,860 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,108 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,935 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 555 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.