↓ Skip to main content

Combination Strategies to Enhance the Efficacy of Antimicrobial Peptides against Bacterial Biofilms

Overview of attention for article published in Frontiers in Microbiology, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
142 Dimensions

Readers on

mendeley
237 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Combination Strategies to Enhance the Efficacy of Antimicrobial Peptides against Bacterial Biofilms
Published in
Frontiers in Microbiology, December 2017
DOI 10.3389/fmicb.2017.02409
Pubmed ID
Authors

Lucia Grassi, Giuseppantonio Maisetta, Semih Esin, Giovanna Batoni

Abstract

The great clinical significance of biofilm-associated infections and their inherent recalcitrance to antibiotic treatment urgently demand the development of novel antibiofilm strategies. In this regard, antimicrobial peptides (AMPs) are increasingly recognized as a promising template for the development of antibiofilm drugs. Indeed, owing to their main mechanism of action, which relies on the permeabilization of bacterial membranes, AMPs exhibit a strong antimicrobial activity also against multidrug-resistant bacteria and slow-growing or dormant biofilm-forming cells and are less prone to induce resistance compared to current antibiotics. Furthermore, the antimicrobial potency of AMPs can be highly increased by combining them with conventional (antibiotics) as well as unconventional bioactive molecules. Combination treatments appear particularly attractive in the case of biofilms since the heterogeneous nature of these microbial communities requires to target cells in different metabolic states (e.g., actively growing cells, dormant cells) and environmental conditions (e.g., acidic pH, lack of oxygen or nutrients). Therefore, the combination of different bioactive molecules acting against distinct biofilm components has the potential to facilitate biofilm control and/or eradication. The aim of this review is to highlight the most promising combination strategies developed so far to enhance the therapeutic potential of AMPs against bacterial biofilms. The rationale behind and beneficial outcomes of using AMPs in combination with conventional antibiotics, compounds capable of disaggregating the extracellular matrix, inhibitors of signaling pathways involved in biofilm formation (i.e., quorum sensing), and other peptide-based molecules will be presented and discussed.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 237 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 237 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 42 18%
Student > Master 36 15%
Student > Bachelor 26 11%
Researcher 23 10%
Student > Doctoral Student 11 5%
Other 26 11%
Unknown 73 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 45 19%
Agricultural and Biological Sciences 23 10%
Immunology and Microbiology 16 7%
Pharmacology, Toxicology and Pharmaceutical Science 14 6%
Chemistry 13 5%
Other 38 16%
Unknown 88 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 January 2018.
All research outputs
#14,960,072
of 23,011,300 outputs
Outputs from Frontiers in Microbiology
#13,970
of 25,119 outputs
Outputs of similar age
#252,855
of 440,043 outputs
Outputs of similar age from Frontiers in Microbiology
#342
of 522 outputs
Altmetric has tracked 23,011,300 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,119 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 440,043 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 522 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.