↓ Skip to main content

Exploring the Cultivable Ectocarpus Microbiome

Overview of attention for article published in Frontiers in Microbiology, December 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • Good Attention Score compared to outputs of the same age and source (77th percentile)

Mentioned by

blogs
1 blog
twitter
3 X users

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
78 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Exploring the Cultivable Ectocarpus Microbiome
Published in
Frontiers in Microbiology, December 2017
DOI 10.3389/fmicb.2017.02456
Pubmed ID
Authors

Hetty KleinJan, Christian Jeanthon, Catherine Boyen, Simon M. Dittami

Abstract

Coastal areas form the major habitat of brown macroalgae, photosynthetic multicellular eukaryotes that have great ecological value and industrial potential. Macroalgal growth, development, and physiology are influenced by the microbial community they accommodate. Studying the algal microbiome should thus increase our fundamental understanding of algal biology and may help to improve culturing efforts. Currently, a freshwater strain of the brown macroalga Ectocarpus subulatus is being developed as a model organism for brown macroalgal physiology and algal microbiome studies. It can grow in high and low salinities depending on which microbes it hosts. However, the molecular mechanisms involved in this process are still unclear. Cultivation of Ectocarpus-associated bacteria is the first step toward the development of a model system for in vitro functional studies of brown macroalgal-bacterial interactions during abiotic stress. The main aim of the present study is thus to provide an extensive collection of cultivable E. subulatus-associated bacteria. To meet the variety of metabolic demands of Ectocarpus-associated bacteria, several isolation techniques were applied, i.e., direct plating and dilution-to-extinction cultivation techniques, each with chemically defined and undefined bacterial growth media. Algal tissue and algal growth media were directly used as inoculum, or they were pretreated with antibiotics, by filtration, or by digestion of algal cell walls. In total, 388 isolates were identified falling into 33 genera (46 distinct strains), of which Halomonas (Gammaproteobacteria), Bosea (Alphaproteobacteria), and Limnobacter (Betaproteobacteria) were the most abundant. Comparisons with 16S rRNA gene metabarcoding data showed that culturability in this study was remarkably high (∼50%), although several cultivable strains were not detected or only present in extremely low abundance in the libraries. These undetected bacteria could be considered as part of the rare biosphere and they may form the basis for the temporal changes in the Ectocarpus microbiome.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 78 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 78 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 16 21%
Student > Ph. D. Student 10 13%
Student > Master 9 12%
Student > Doctoral Student 7 9%
Student > Bachelor 7 9%
Other 10 13%
Unknown 19 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 29 37%
Biochemistry, Genetics and Molecular Biology 10 13%
Environmental Science 5 6%
Immunology and Microbiology 3 4%
Computer Science 2 3%
Other 6 8%
Unknown 23 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 January 2018.
All research outputs
#3,777,343
of 23,015,156 outputs
Outputs from Frontiers in Microbiology
#3,602
of 25,134 outputs
Outputs of similar age
#81,666
of 439,930 outputs
Outputs of similar age from Frontiers in Microbiology
#112
of 513 outputs
Altmetric has tracked 23,015,156 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 25,134 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,930 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 513 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 77% of its contemporaries.