↓ Skip to main content

Metagenomic Insights Into the Microbial Community and Nutrient Cycling in the Western Subarctic Pacific Ocean

Overview of attention for article published in Frontiers in Microbiology, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
48 Dimensions

Readers on

mendeley
78 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Metagenomic Insights Into the Microbial Community and Nutrient Cycling in the Western Subarctic Pacific Ocean
Published in
Frontiers in Microbiology, April 2018
DOI 10.3389/fmicb.2018.00623
Pubmed ID
Authors

Yingdong Li, Hongmei Jing, Xiaomin Xia, Shunyan Cheung, Koji Suzuki, Hongbin Liu

Abstract

The composition and metabolic functions of prokaryotic communities in the western subarctic Pacific (WSP), where strong mixing of waters from the Sea of Okhotsk and the East Kamchatka Current result in transfer to the Oyashio Current, were investigated using a shotgun metagenome sequencing approach. Functional metabolic genes related to nutrient cycling of nitrogen, sulfur, carbohydrates, iron and amino acids were differently distributed between the surface and deep waters of the WSP. Genes related to nitrogen metabolism were mainly found in deep waters, where Thaumarchaeaota, Sphingomonadales, and Pseudomonadales were closely associated and performing important roles in ammonia oxidation, assimilatory nitrate reduction, and dissimilatory nitrate reduction processes, respectively. In addition, orders affiliated to Spingobacteria and Alphaproteobacteria were crucial for sulfate reduction and abundant at 3000 m, whereas orders affiliated to Gammaproteobacteria, which harbored the most sulfate reduction genes, were abundant at 1000 m. Additionally, when compared with the East Kamchatka Current, the prokaryotes in the Oyashio Current were likely to consume more energy for synthesizing cellular components. Also, genes encoding iron transport and siderophore biosynthesis proteins were in low abundance, indicating that the iron was not a limiting factor in the Oyashio current. In contrast, in the East Kamchatka Current, prokaryotes were more likely to directly utilize the amino acids and absorb iron from the environment. Overall, our data indicated that the transformation from the East Kamchatka Current to the Oyashio Current reshapes not only the composition of microbial community, but also the function of the metabolic processes. These results extended our knowledge of the microbial composition and potential metabolism in the WSP.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 78 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 78 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 14 18%
Student > Ph. D. Student 13 17%
Researcher 9 12%
Student > Bachelor 5 6%
Professor > Associate Professor 5 6%
Other 12 15%
Unknown 20 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 22%
Environmental Science 13 17%
Biochemistry, Genetics and Molecular Biology 9 12%
Earth and Planetary Sciences 5 6%
Unspecified 4 5%
Other 4 5%
Unknown 26 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 April 2018.
All research outputs
#14,680,831
of 23,498,099 outputs
Outputs from Frontiers in Microbiology
#12,924
of 25,939 outputs
Outputs of similar age
#188,394
of 330,297 outputs
Outputs of similar age from Frontiers in Microbiology
#355
of 598 outputs
Altmetric has tracked 23,498,099 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,939 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,297 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 598 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.