↓ Skip to main content

Biokinetic Characterization and Activities of N2O-Reducing Bacteria in Response to Various Oxygen Levels

Overview of attention for article published in Frontiers in Microbiology, April 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
16 X users

Citations

dimensions_citation
73 Dimensions

Readers on

mendeley
90 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Biokinetic Characterization and Activities of N2O-Reducing Bacteria in Response to Various Oxygen Levels
Published in
Frontiers in Microbiology, April 2018
DOI 10.3389/fmicb.2018.00697
Pubmed ID
Authors

Toshikazu Suenaga, Shohei Riya, Masaaki Hosomi, Akihiko Terada

Abstract

Nitrous oxide (N2O)-reducing bacteria, which reduce N2O to nitrogen in the absence of oxygen, are phylogenetically spread throughout various taxa and have a potential role as N2O sinks in the environment. However, research on their physiological traits has been limited. In particular, their activities under microaerophilic and aerobic conditions, which severely inhibit N2O reduction, remain poorly understood. We used an O2 and N2O micro-respirometric system to compare the N2O reduction kinetics of four strains, i.e., two strains of an Azospira sp., harboring clade II type nosZ, and Pseudomonas stutzeri and Paracoccus denitrificans, harboring clade I type nosZ, in the presence and absence of oxygen. In the absence of oxygen, the highest N2O-reducing activity, Vm,N2O, was 5.80 ± 1.78 × 10-3 pmol/h/cell of Azospira sp. I13, and the highest and lowest half-saturation constants were 34.8 ± 10.2 μM for Pa. denitirificans and 0.866 ± 0.29 μM for Azospira sp. I09. Only Azospira sp. I09 showed N2O-reducing activity under microaerophilic conditions at oxygen concentrations below 110 μM, although the activity was low (10% of Vm,N2O). This trait is represented by the higher O2 inhibition coefficient than those of the other strains. The activation rates of N2O reductase, which describe the resilience of the N2O reduction activity after O2 exposure, differ for the two strains of Azospira sp. (0.319 ± 0.028 h-1 for strain I09 and 0.397 ± 0.064 h-1 for strain I13) and Ps. stutzeri (0.200 ± 0.013 h-1), suggesting that Azospira sp. has a potential for rapid recovery of N2O reduction and tolerance against O2 inhibition. These physiological characteristics of Azospira sp. can be of promise for mitigation of N2O emission in industrial applications.

X Demographics

X Demographics

The data shown below were collected from the profiles of 16 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 90 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 90 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 21%
Student > Master 13 14%
Researcher 11 12%
Student > Bachelor 4 4%
Other 3 3%
Other 6 7%
Unknown 34 38%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 16%
Environmental Science 13 14%
Engineering 8 9%
Chemical Engineering 3 3%
Earth and Planetary Sciences 3 3%
Other 10 11%
Unknown 39 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 December 2020.
All research outputs
#4,155,987
of 25,537,395 outputs
Outputs from Frontiers in Microbiology
#3,698
of 29,509 outputs
Outputs of similar age
#75,958
of 343,667 outputs
Outputs of similar age from Frontiers in Microbiology
#116
of 587 outputs
Altmetric has tracked 25,537,395 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 29,509 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 343,667 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 587 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.