↓ Skip to main content

Lactobacilli Are Prominent Members of the Microbiota Involved in the Ruminal Digestion of Barley and Corn

Overview of attention for article published in Frontiers in Microbiology, April 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

blogs
1 blog
twitter
3 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Lactobacilli Are Prominent Members of the Microbiota Involved in the Ruminal Digestion of Barley and Corn
Published in
Frontiers in Microbiology, April 2018
DOI 10.3389/fmicb.2018.00718
Pubmed ID
Authors

Hee E. Yang, Claiton A. Zotti, John J. McKinnon, Tim A. McAllister

Abstract

The chemical composition of barley grain can vary among barley varieties (Fibar, Xena, McGwire, and Hilose) and result in different digestion efficiencies in the rumen. It is not known if compositional differences in barley can affect the microbiota involved in the ruminal digestion of barley. The objective of this study was to characterize the in situ rumen degradability and microbiota of four barley grain varieties and to compare these to corn. Three ruminally cannulated heifers were fed a low (60% barley silage, 37% barley grain, and 3% supplement) or high grain (37% barley silage, 60% barley grain, and 3% supplement) diet. One set of bags was used to estimate dry matter (DM), starch and crude protein (CP) degradability. A second set was used to extract DNA from the adherent microbiota and visualize grain after incubation using scanning electron microscopy (SEM). DNA was subjected to amplicon 16S rRNA gene sequencing followed by analysis using QIIME. In the low grain diet, McGwire had the highest effective degradability (ED) of DM (P < 0.01). The ED of starch was highest (P < 0.01) for Fibar, McGwire, and Xena, but the ED of CP was not affected by variety. For the high grain diet, Xena and McGwire had the highest ED of DM (P < 0.01). The ED of starch was highest (P < 0.01) for Xena and Fibar. The ED of protein was highest (P < 0.01) for Xena and McGwire. Although the microbiota did not differ among barley varieties, they did differ from corn and with incubation time. Lactobacilli were dominant members of the mature biofilms associated with corn and barley and were accompanied by a notable increase in the lactic acid utilizing genera, Megasphaera. As none of the cattle exhibited subclinical or clinical acidosis during the study, our results suggest that lactobacilli play a more prominent role in routine starch digestion than presently surmised.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 25%
Student > Master 6 17%
Student > Doctoral Student 3 8%
Student > Bachelor 3 8%
Student > Ph. D. Student 3 8%
Other 4 11%
Unknown 8 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 56%
Immunology and Microbiology 3 8%
Biochemistry, Genetics and Molecular Biology 1 3%
Veterinary Science and Veterinary Medicine 1 3%
Computer Science 1 3%
Other 1 3%
Unknown 9 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 April 2018.
All research outputs
#3,788,542
of 23,498,099 outputs
Outputs from Frontiers in Microbiology
#3,543
of 25,939 outputs
Outputs of similar age
#74,266
of 330,438 outputs
Outputs of similar age from Frontiers in Microbiology
#121
of 589 outputs
Altmetric has tracked 23,498,099 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 25,939 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has done well, scoring higher than 86% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,438 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 589 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.