↓ Skip to main content

Comprehensive Antiretroviral Restriction Factor Profiling Reveals the Evolutionary Imprint of the ex Vivo and in Vivo IFN-β Response in HTLV-1-Associated Neuroinflammation

Overview of attention for article published in Frontiers in Microbiology, May 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (72nd percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
8 X users
facebook
1 Facebook page
googleplus
1 Google+ user

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comprehensive Antiretroviral Restriction Factor Profiling Reveals the Evolutionary Imprint of the ex Vivo and in Vivo IFN-β Response in HTLV-1-Associated Neuroinflammation
Published in
Frontiers in Microbiology, May 2018
DOI 10.3389/fmicb.2018.00985
Pubmed ID
Authors

Fabio E. Leal, Soraya Maria Menezes, Emanuela A. S. Costa, Phillip M. Brailey, Lucio Gama, Aluisio C. Segurado, Esper G. Kallas, Douglas F. Nixon, Tim Dierckx, Ricardo Khouri, Jurgen Vercauteren, Bernardo Galvão-Castro, Rui Andre Saraiva Raposo, Johan Van Weyenbergh

Abstract

HTLV-1-Associated Myelopathy (HAM/TSP) is a progressive neuroinflammatory disorder for which no disease-modifying treatment exists. Modest clinical benefit from type I interferons (IFN-α/β) in HAM/TSP contrasts with its recently identified IFN-inducible gene signature. In addition, IFN-α treatment in vivo decreases proviral load and immune activation in HAM/TSP, whereas IFN-β therapy decreases tax mRNA and lymphoproliferation. We hypothesize this "IFN paradox" in HAM/TSP might be explained by both cell type- and gene-specific effects of type I IFN in HTLV-1-associated pathogenesis. Therefore, we analyzed ex vivo transcriptomes of CD4+ T cells, PBMCs and whole blood in healthy controls, HTLV-1-infected individuals, and HAM/TSP patients. First, we used a targeted approach, simultaneously quantifying HTLV-1 mRNA (HBZ, Tax), proviral load and 42 host genes with known antiretroviral (anti-HIV) activity in purified CD4+ T cells. This revealed two major clusters ("antiviral/protective" vs. "proviral/deleterious"), as evidenced by significant negative (TRIM5/TRIM22/BST2) vs. positive correlation (ISG15/PAF1/CDKN1A) with HTLV-1 viral markers and clinical status. Surprisingly, we found a significant inversion of antiretroviral activity of host restriction factors, as evidenced by opposite correlation to in vivo HIV-1 vs. HTLV-1 RNA levels. The anti-HTLV-1 effect of antiviral cluster genes was significantly correlated to their adaptive chimp/human evolution score, for both Tax mRNA and PVL. Six genes of the proposed antiviral cluster underwent lentivirus-driven purifying selection during primate evolution (TRIM5/TRIM22/BST2/APOBEC3F-G-H), underscoring the cross-retroviral evolutionary imprint. Secondly, we examined the genome-wide type I IFN response in HAM/TSP patients, following short-term ex vivo culture of PBMCs with either IFN-α or IFN-β. Microarray analysis evidenced 12 antiretroviral genes (including TRIM5α/TRIM22/BST2) were significantly up-regulated by IFN-β, but not IFN-α, in HAM/TSP. This was paralleled by a significant decrease in lymphoproliferation by IFN-β, but not IFN-α treatment. Finally, using published ex vivo whole blood transcriptomic data of independent cohorts, we validated the significant positive correlation between TRIM5, TRIM22, and BST2 in HTLV-1-infected individuals and HAM/TSP patients, which was independent of the HAM/TSP disease signature. In conclusion, our results provide ex vivo mechanistic evidence for the observed immunovirological effect of in vivo IFN-β treatment in HAM/TSP, reconcile an apparent IFN paradox in HTLV-1 research and identify biomarkers/targets for a precision medicine approach.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 43 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 21%
Student > Master 8 19%
Student > Bachelor 6 14%
Researcher 4 9%
Student > Postgraduate 2 5%
Other 6 14%
Unknown 8 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 26%
Biochemistry, Genetics and Molecular Biology 6 14%
Medicine and Dentistry 6 14%
Immunology and Microbiology 5 12%
Neuroscience 2 5%
Other 3 7%
Unknown 10 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 April 2021.
All research outputs
#4,706,443
of 23,085,832 outputs
Outputs from Frontiers in Microbiology
#4,726
of 25,249 outputs
Outputs of similar age
#90,593
of 330,120 outputs
Outputs of similar age from Frontiers in Microbiology
#159
of 640 outputs
Altmetric has tracked 23,085,832 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 25,249 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,120 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 640 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.