↓ Skip to main content

Defining the Species Micromonospora saelicesensis and Micromonospora noduli Under the Framework of Genomics

Overview of attention for article published in Frontiers in Microbiology, June 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Defining the Species Micromonospora saelicesensis and Micromonospora noduli Under the Framework of Genomics
Published in
Frontiers in Microbiology, June 2018
DOI 10.3389/fmicb.2018.01360
Pubmed ID
Authors

Raúl Riesco, Lorena Carro, Brenda Román-Ponce, Carlos Prieto, Jochen Blom, Hans-Peter Klenk, Philippe Normand, Martha E. Trujillo

Abstract

The type isolates of species Micromonospora saelicesensis and Micromonospora noduli are Gram-stain positive actinobacteria that were originally isolated from nitrogen fixing nodules of the legumes Lupinus angustifolius and Pisum sativum, respectively. These two species are very closely related and questions arise as to whether they should be merged into a single species. To better delineate the relationship of M. saelicesensis and M. noduli, 10 strains isolated from plant tissue (nodules and leaves) and identified by their 16S rRNA gene sequences as either M. saelicensesis or M. noduli, based on a cut-off value of ≥99.5% were selected for whole-genome sequencing and compared with the type strains of M. saelicesensis Lupac 09T and M. noduli GUI43T using overall genome relatedness indices (OGRI) which included ANI, OrthoANI and digital DNA-DNA hybridization. Whole- and core-genome phylogenomic analyses were also carried out. These results were compared with the topologies of the 16S rRNA and gyrB gene phylogenies. Good correlation was found between all trees except for the 16S rRNA gene. Overall results also supported the current classification of M. saelicesensis and M. noduli as separate species. Especially useful was the core-genome phylogenetic analyses based on 92 genes and the dDDH results which were highly correlated. The importance of using more than one strain for a better definition of a species was also shown. A series of in vitro phenotypic assays performed at different times were compared with in silico predictions based on genomic data. In vitro phenotypic tests showed discrepancies among the independent studies, confirming the lack of reproducibility even when tests were performed in the same laboratory. On the other hand, the use of in silico predictions proved useful for defining a stable phenotype profile among the strains analyzed. These results provide a working framework for defining Micromonospora species at the genomic and phenotypic level.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 23%
Student > Ph. D. Student 5 14%
Student > Master 4 11%
Student > Bachelor 3 9%
Unspecified 2 6%
Other 4 11%
Unknown 9 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 20%
Biochemistry, Genetics and Molecular Biology 5 14%
Unspecified 2 6%
Environmental Science 2 6%
Engineering 2 6%
Other 6 17%
Unknown 11 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 June 2018.
All research outputs
#18,640,437
of 23,092,602 outputs
Outputs from Frontiers in Microbiology
#19,659
of 25,263 outputs
Outputs of similar age
#254,161
of 328,981 outputs
Outputs of similar age from Frontiers in Microbiology
#528
of 722 outputs
Altmetric has tracked 23,092,602 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,263 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,981 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 722 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.