↓ Skip to main content

A Large Open Pangenome and a Small Core Genome for Giant Pandoraviruses

Overview of attention for article published in Frontiers in Microbiology, July 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

twitter
15 X users
wikipedia
3 Wikipedia pages

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Large Open Pangenome and a Small Core Genome for Giant Pandoraviruses
Published in
Frontiers in Microbiology, July 2018
DOI 10.3389/fmicb.2018.01486
Pubmed ID
Authors

Sarah Aherfi, Julien Andreani, Emeline Baptiste, Amina Oumessoum, Fábio P. Dornas, Ana Claudia dos S. P. Andrade, Eric Chabriere, Jonatas Abrahao, Anthony Levasseur, Didier Raoult, Bernard La Scola, Philippe Colson

Abstract

Giant viruses of amoebae are distinct from classical viruses by the giant size of their virions and genomes. Pandoraviruses are the record holders in size of genomes and number of predicted genes. Three strains, P. salinus, P. dulcis, and P. inopinatum, have been described to date. We isolated three new ones, namely P. massiliensis, P. braziliensis, and P. pampulha, from environmental samples collected in Brazil. We describe here their genomes, the transcriptome and proteome of P. massiliensis, and the pangenome of the group encompassing the six pandoravirus isolates. Genome sequencing was performed with an Illumina MiSeq instrument. Genome annotation was performed using GeneMarkS and Prodigal softwares and comparative genomic analyses. The core genome and pangenome were determined using notably ProteinOrtho and CD-HIT programs. Transcriptomics was performed for P. massiliensis with the Illumina MiSeq instrument; proteomics was also performed for this virus using 1D/2D gel electrophoresis and mass spectrometry on a Synapt G2Si Q-TOF traveling wave mobility spectrometer. The genomes of the three new pandoraviruses are comprised between 1.6 and 1.8 Mbp. The genomes of P. massiliensis, P. pampulha, and P. braziliensis were predicted to harbor 1,414, 2,368, and 2,696 genes, respectively. These genes comprise up to 67% of ORFans. Phylogenomic analyses showed that P. massiliensis and P. braziliensis were more closely related to each other than to the other pandoraviruses. The core genome of pandoraviruses comprises 352 clusters of genes, and the ratio core genome/pangenome is less than 0.05. The extinction curve shows clearly that the pangenome is still open. A quarter of the gene content of P. massiliensis was detected by transcriptomics. In addition, a product for a total of 162 open reading frames were found by proteomic analysis of P. massiliensis virions, including notably the products of 28 ORFans, 99 hypothetical proteins, and 90 core genes. Further analyses should allow to gain a better knowledge and understanding of the evolution and origin of these giant pandoraviruses, and of their relationships with viruses and cellular microorganisms.

X Demographics

X Demographics

The data shown below were collected from the profiles of 15 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 15%
Student > Bachelor 7 15%
Student > Master 5 11%
Student > Ph. D. Student 5 11%
Student > Doctoral Student 2 4%
Other 5 11%
Unknown 16 34%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 28%
Biochemistry, Genetics and Molecular Biology 7 15%
Medicine and Dentistry 3 6%
Unspecified 1 2%
Veterinary Science and Veterinary Medicine 1 2%
Other 2 4%
Unknown 20 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 September 2022.
All research outputs
#3,134,111
of 24,593,959 outputs
Outputs from Frontiers in Microbiology
#2,765
of 27,955 outputs
Outputs of similar age
#60,715
of 331,130 outputs
Outputs of similar age from Frontiers in Microbiology
#111
of 744 outputs
Altmetric has tracked 24,593,959 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 27,955 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one has done particularly well, scoring higher than 90% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,130 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 744 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 85% of its contemporaries.