↓ Skip to main content

Characterization of Dendritic Cell-Derived Extracellular Vesicles During Dengue Virus Infection

Overview of attention for article published in Frontiers in Microbiology, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
79 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Characterization of Dendritic Cell-Derived Extracellular Vesicles During Dengue Virus Infection
Published in
Frontiers in Microbiology, August 2018
DOI 10.3389/fmicb.2018.01792
Pubmed ID
Authors

Sharon de T. Martins, Diogo Kuczera, Jan Lötvall, Juliano Bordignon, Lysangela R. Alves

Abstract

The dengue virus (DENV), transmitted by Aedes spp. mosquitoes, is one of the most important arboviral infections in the world. Dengue begins as a febrile condition, and in certain patients, it can evolve severe clinical outcomes, such as dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The reasons why certain patients develop DHF or DSS have not been thoroughly elucidated to date, and both patient and viral factors have been implicated. Previous work has shown that a severe immune dysfunction involving dendritic cells and T cells plays a key role in increasing the disease severity, especially in secondary heterologous infections. Extracellular vesicles (EVs) are membranous particles that are secreted by several cell types involved in homeostatic and pathological processes. Secretion of EVs by infected cells can enhance immune responses or favor viral evasion. In this study, we compare the molecular content of EVs that are secreted by human primary dendritic cells under different conditions: uninfected or infected with DENV3 strains isolated from patients with different infection phenotypes (a severe case involving DSS and a mild case). Human monocyte-derived dendritic cells (mdDCs) were infected with the dengue virus strains DENV3 5532 (severe) or DENV3 290 (mild), and the EVs were isolated. The presence of cup-shaped EVs was confirmed by electron microscopy and immunostaining with CD9, CD81, and CD83. The RNA content from the mdDC-infected cells contained several mRNAs and miRNAs related to immune responses compared to the EVs from mock-infected mdDCs. A number of these RNAs were detected exclusively during infection with DENV3 290 or DENV3 5532. This result suggests that the differential immune modulation of mdDCs by dengue strains can be achieved through the EV pathway. Additionally, we observed an association of EVs with DENV-infectious particles that seem to be protected from antibodies targeting the DENV envelope protein. We also showed that EVs derived from cells treated with IFN alpha have a protective effect against DENV infection in other cells. These results suggested that during DENV infection, the EV pathway could be exploited to favor viral viability, although immune mechanisms to counteract viral infection can also involve DC-derived EVs.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 79 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 79 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 15%
Researcher 11 14%
Student > Master 9 11%
Student > Bachelor 6 8%
Student > Doctoral Student 6 8%
Other 16 20%
Unknown 19 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 22%
Immunology and Microbiology 12 15%
Medicine and Dentistry 6 8%
Agricultural and Biological Sciences 5 6%
Pharmacology, Toxicology and Pharmaceutical Science 5 6%
Other 13 16%
Unknown 21 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 August 2018.
All research outputs
#13,623,794
of 23,099,576 outputs
Outputs from Frontiers in Microbiology
#10,689
of 25,274 outputs
Outputs of similar age
#169,574
of 330,720 outputs
Outputs of similar age from Frontiers in Microbiology
#379
of 751 outputs
Altmetric has tracked 23,099,576 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,274 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,720 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 751 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.