↓ Skip to main content

An Engineered Synthetic Biologic Protects Against Clostridium difficile Infection

Overview of attention for article published in Frontiers in Microbiology, September 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
7 X users

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An Engineered Synthetic Biologic Protects Against Clostridium difficile Infection
Published in
Frontiers in Microbiology, September 2018
DOI 10.3389/fmicb.2018.02080
Pubmed ID
Authors

Gayatri Vedantam, Joshua Kochanowsky, Jason Lindsey, Michael Mallozzi, Jennifer Lising Roxas, Chelsea Adamson, Farhan Anwar, Andrew Clark, Rachel Claus-Walker, Asad Mansoor, Rebecca McQuade, Ross Calvin Monasky, Shylaja Ramamurthy, Bryan Roxas, V. K. Viswanathan

Abstract

Morbidity and mortality attributed to Clostridium difficile infection (CDI) have increased over the past 20 years. Currently, antibiotics are the only US FDA-approved treatment for primary C. difficile infection, and these are, ironically, associated with disease relapse and the threat of burgeoning drug resistance. We previously showed that non-toxin virulence factors play key roles in CDI, and that colonization factors are critical for disease. Specifically, a C. difficile adhesin, Surface Layer Protein A (SlpA) is a major contributor to host cell attachment. In this work, we engineered Syn-LAB 2.0 and Syn-LAB 2.1, two synthetic biologic agents derived from lactic acid bacteria, to stably and constitutively express a host-cell binding fragment of the C. difficile adhesin SlpA on their cell-surface. Both agents harbor conditional suicide plasmids expressing a codon-optimized chimera of the lactic acid bacterium's cell-wall anchoring surface-protein domain, fused to the conserved, highly adherent, host-cell-binding domain of C. difficile SlpA. Both agents also incorporate engineered biocontrol, obviating the need for any antibiotic selection. Syn-LAB 2.0 and Syn-LAB 2.1 possess positive biophysical and in vivo properties compared with their parental antecedents in that they robustly and constitutively display the SlpA chimera on their cell surface, potentiate human intestinal epithelial barrier function in vitro, are safe, tolerable and palatable to Golden Syrian hamsters and neonatal piglets at high daily doses, and are detectable in animal feces within 24 h of dosing, confirming robust colonization. In combination, the engineered strains also delay (in fixed doses) or prevent (when continuously administered) death of infected hamsters upon challenge with high doses of virulent C. difficile. Finally, fixed-dose Syn-LAB ameliorates diarrhea in a non-lethal model of neonatal piglet enteritis. Taken together, our findings suggest that the two synthetic biologics may be effectively employed as non-antibiotic interventions for CDI.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 45 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 13%
Researcher 6 13%
Student > Master 5 11%
Student > Bachelor 4 9%
Student > Doctoral Student 3 7%
Other 4 9%
Unknown 17 38%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 24%
Engineering 4 9%
Agricultural and Biological Sciences 4 9%
Medicine and Dentistry 3 7%
Psychology 2 4%
Other 5 11%
Unknown 16 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 September 2018.
All research outputs
#12,812,829
of 23,102,082 outputs
Outputs from Frontiers in Microbiology
#8,702
of 25,280 outputs
Outputs of similar age
#154,043
of 335,873 outputs
Outputs of similar age from Frontiers in Microbiology
#313
of 692 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,280 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,873 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 692 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.