↓ Skip to main content

Microbiome Interaction Networks and Community Structure From Laboratory-Reared and Field-Collected Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus Mosquito Vectors

Overview of attention for article published in Frontiers in Microbiology, September 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

twitter
43 X users

Citations

dimensions_citation
116 Dimensions

Readers on

mendeley
201 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Microbiome Interaction Networks and Community Structure From Laboratory-Reared and Field-Collected Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus Mosquito Vectors
Published in
Frontiers in Microbiology, September 2018
DOI 10.3389/fmicb.2018.02160
Pubmed ID
Authors

Shivanand Hegde, Kamil Khanipov, Levent Albayrak, George Golovko, Maria Pimenova, Miguel A. Saldaña, Mark M. Rojas, Emily A. Hornett, Greg C. Motl, Chris L. Fredregill, James A. Dennett, Mustapha Debboun, Yuriy Fofanov, Grant L. Hughes

Abstract

Microbial interactions are an underappreciated force in shaping insect microbiome communities. Although pairwise patterns of symbiont interactions have been identified, we have a poor understanding regarding the scale and the nature of co-occurrence and co-exclusion interactions within the microbiome. To characterize these patterns in mosquitoes, we sequenced the bacterial microbiome of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus caught in the field or reared in the laboratory and used these data to generate interaction networks. For collections, we used traps that attracted host-seeking or ovipositing female mosquitoes to determine how physiological state affects the microbiome under field conditions. Interestingly, we saw few differences in species richness or microbiome community structure in mosquitoes caught in either trap. Co-occurrence and co-exclusion analysis identified 116 pairwise interactions substantially increasing the list of bacterial interactions observed in mosquitoes. Networks generated from the microbiome of Ae. aegypti often included highly interconnected hub bacteria. There were several instances where co-occurring bacteria co-excluded a third taxa, suggesting the existence of tripartite relationships. Several associations were observed in multiple species or in field and laboratory-reared mosquitoes indicating these associations are robust and not influenced by environmental or host factors. To demonstrate that microbial interactions can influence colonization of the host, we administered symbionts to Ae. aegypti larvae that either possessed or lacked their resident microbiota. We found that the presence of resident microbiota can inhibit colonization of particular bacterial taxa. Our results highlight that microbial interactions in mosquitoes are complex and influence microbiome composition.

X Demographics

X Demographics

The data shown below were collected from the profiles of 43 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 201 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 201 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 33 16%
Researcher 28 14%
Student > Master 25 12%
Student > Bachelor 22 11%
Student > Doctoral Student 16 8%
Other 37 18%
Unknown 40 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 74 37%
Biochemistry, Genetics and Molecular Biology 27 13%
Immunology and Microbiology 18 9%
Environmental Science 9 4%
Medicine and Dentistry 5 2%
Other 20 10%
Unknown 48 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 24. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 April 2020.
All research outputs
#1,605,548
of 25,801,916 outputs
Outputs from Frontiers in Microbiology
#986
of 29,827 outputs
Outputs of similar age
#32,786
of 348,638 outputs
Outputs of similar age from Frontiers in Microbiology
#42
of 695 outputs
Altmetric has tracked 25,801,916 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 29,827 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has done particularly well, scoring higher than 96% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 348,638 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 695 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.