↓ Skip to main content

The Staphylococcus epidermidis Transcriptional Profile During Carriage

Overview of attention for article published in Frontiers in Microbiology, April 2022
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Staphylococcus epidermidis Transcriptional Profile During Carriage
Published in
Frontiers in Microbiology, April 2022
DOI 10.3389/fmicb.2022.896311
Pubmed ID
Authors

Pascâl Teichmann, Anna Both, Christiane Wolz, Mathias W. Hornef, Holger Rohde, Amir S. Yazdi, Marc Burian

Abstract

The virulence factors of the opportunistic human pathogen Staphylococcus epidermidis have been a main subject of research. In contrast, limited information is available on the mechanisms that allow the bacterium to accommodate to the conditions during carriage, a prerequisite for pathogenicity. Here, we tested the hypothesis that the adaptation of S. epidermidis at different anatomical sites is reflected by differential gene regulation. We used qPCR to profile S. epidermidis gene expression in vivo in nose and skin swabs of 11 healthy individuals. Despite some heterogeneity between individuals, significant site-specific differences were detected. For example, expression of the S. epidermidis regulator sarA was found similarly in the nose and on the skin of all individuals. Also, genes encoding colonization and immune evasion factors (sdrG, capC, and dltA), as well as the sphingomyelinase encoding gene sph, were expressed at both anatomical sites. In contrast, expression of the global regulator agr was almost inactive in the nose but readily present on the skin. A similar site-specific expression profile was also identified for the putative chitinase-encoding SE0760. In contrast, expression of the autolysine-encoding gene sceD and the wall teichoic acid (WTA) biosynthesis gene tagB were more pronounced in the nose as compared to the skin. In summary, our analysis identifies site-specific gene expression patterns of S. epidermidis during colonization. In addition, the observed expression signature was significantly different from growth in vitro. Interestingly, the strong transcription of sphingomyelinase together with the low expression of genes encoding the tricarboxylic acid cycle (TCA) suggests very good nutrient supply in both anatomical niches, even on the skin where one might have suspected a rather lower nutrient supply compared to the nose.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 19%
Student > Doctoral Student 2 13%
Researcher 2 13%
Student > Master 2 13%
Professor 1 6%
Other 1 6%
Unknown 5 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 25%
Immunology and Microbiology 2 13%
Agricultural and Biological Sciences 1 6%
Medicine and Dentistry 1 6%
Engineering 1 6%
Other 0 0%
Unknown 7 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 May 2022.
All research outputs
#13,750,494
of 23,312,088 outputs
Outputs from Frontiers in Microbiology
#10,815
of 25,616 outputs
Outputs of similar age
#190,771
of 443,127 outputs
Outputs of similar age from Frontiers in Microbiology
#429
of 1,343 outputs
Altmetric has tracked 23,312,088 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,616 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 443,127 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 1,343 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.