↓ Skip to main content

From protein structure to function via single crystal optical spectroscopy

Overview of attention for article published in Frontiers in Molecular Biosciences, April 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • High Attention Score compared to outputs of the same age and source (95th percentile)

Mentioned by

news
3 news outlets
twitter
1 X user

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
56 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
From protein structure to function via single crystal optical spectroscopy
Published in
Frontiers in Molecular Biosciences, April 2015
DOI 10.3389/fmolb.2015.00012
Pubmed ID
Authors

Luca Ronda, Stefano Bruno, Stefano Bettati, Paola Storici, Andrea Mozzarelli

Abstract

The more than 100,000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic "artifacts," including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density maps, thus limiting the relevance of structure determinations. Moreover, for most of these structures, no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in infereing protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman, and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5'-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 56 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 27%
Student > Master 13 23%
Student > Ph. D. Student 9 16%
Other 5 9%
Student > Bachelor 3 5%
Other 4 7%
Unknown 7 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 29%
Biochemistry, Genetics and Molecular Biology 10 18%
Chemistry 7 13%
Computer Science 2 4%
Physics and Astronomy 2 4%
Other 5 9%
Unknown 14 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 24. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 November 2022.
All research outputs
#1,382,036
of 23,049,027 outputs
Outputs from Frontiers in Molecular Biosciences
#52
of 3,884 outputs
Outputs of similar age
#18,808
of 264,975 outputs
Outputs of similar age from Frontiers in Molecular Biosciences
#1
of 21 outputs
Altmetric has tracked 23,049,027 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,884 research outputs from this source. They receive a mean Attention Score of 3.3. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,975 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 95% of its contemporaries.