↓ Skip to main content

Conjugative DNA Transfer Is Enhanced by Plasmid R1 Partitioning Proteins

Overview of attention for article published in Frontiers in Molecular Biosciences, July 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Conjugative DNA Transfer Is Enhanced by Plasmid R1 Partitioning Proteins
Published in
Frontiers in Molecular Biosciences, July 2016
DOI 10.3389/fmolb.2016.00032
Pubmed ID
Authors

Christian J. Gruber, Silvia Lang, Vinod K. H. Rajendra, Monika Nuk, Sandra Raffl, Joel F. Schildbach, Ellen L. Zechner

Abstract

Bacterial conjugation is a form of type IV secretion used to transport protein and DNA directly to recipient bacteria. The process is cell contact-dependent, yet the mechanisms enabling extracellular events to trigger plasmid transfer to begin inside the cell remain obscure. In this study of plasmid R1 we investigated the role of plasmid proteins in the initiation of gene transfer. We find that TraI, the central regulator of conjugative DNA processing, interacts physically, and functionally with the plasmid partitioning proteins ParM and ParR. These interactions stimulate TraI catalyzed relaxation of plasmid DNA in vivo and in vitro and increase ParM ATPase activity. ParM also binds the coupling protein TraD and VirB4-like channel ATPase TraC. Together, these protein-protein interactions probably act to co-localize the transfer components intracellularly and promote assembly of the conjugation machinery. Importantly these data also indicate that the continued association of ParM and ParR at the conjugative pore is necessary for plasmid transfer to start efficiently. Moreover, the conjugative pilus and underlying secretion machinery assembled in the absence of Par proteins mediate poor biofilm formation and are completely dysfunctional for pilus specific R17 bacteriophage uptake. Thus, functional integration of Par components at the interface of relaxosome, coupling protein, and channel ATPases appears important for an optimal conformation and effective activation of the transfer machinery. We conclude that low copy plasmid R1 has evolved an active segregation system that optimizes both its vertical and lateral modes of dissemination.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 3%
Unknown 34 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 17%
Researcher 5 14%
Student > Bachelor 4 11%
Student > Master 4 11%
Professor 2 6%
Other 3 9%
Unknown 11 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 12 34%
Agricultural and Biological Sciences 8 23%
Physics and Astronomy 2 6%
Medicine and Dentistry 1 3%
Unknown 12 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 July 2016.
All research outputs
#18,465,988
of 22,880,691 outputs
Outputs from Frontiers in Molecular Biosciences
#1,961
of 3,807 outputs
Outputs of similar age
#279,142
of 363,111 outputs
Outputs of similar age from Frontiers in Molecular Biosciences
#19
of 26 outputs
Altmetric has tracked 22,880,691 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,807 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 363,111 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.