↓ Skip to main content

MgaSpn and H-NS: Two Unrelated Global Regulators with Similar DNA-Binding Properties

Overview of attention for article published in Frontiers in Molecular Biosciences, September 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
MgaSpn and H-NS: Two Unrelated Global Regulators with Similar DNA-Binding Properties
Published in
Frontiers in Molecular Biosciences, September 2016
DOI 10.3389/fmolb.2016.00060
Pubmed ID
Authors

Virtu Solano-Collado, Mário Hüttener, Manuel Espinosa, Antonio Juárez, Alicia Bravo

Abstract

Global regulators play an essential role in the adaptation of bacterial cells to specific niches. Bacterial pathogens thriving in the tissues and organs of their eukaryotic hosts are a well-studied example. Some of the proteins that recognize local DNA structures rather than specific nucleotide sequences act as global modulators in many bacteria, both Gram-negative and -positive. To this class of regulators belong the H-NS-like proteins, mainly identified in γ-Proteobacteria, and the MgaSpn-like proteins identified in Firmicutes. H-NS and MgaSpn from Escherichia coli and Streptococcus pneumoniae, respectively, neither have sequence similarity nor share structural domains. Nevertheless, they display common features in their interaction with DNA, namely: (i) they bind to DNA in a non-sequence-specific manner, (ii) they have a preference for intrinsically curved DNA regions, and (iii) they are able to form multimeric complexes on linear DNA. Using DNA fragments from the hemolysin operon regulatory region of the E. coli plasmid pHly152, we show in this work that MgaSpn is able to recognize particular regions on extended H-NS binding sites. Such regions are either located at or flanked by regions of potential bendability. Moreover, we show that the regulatory region of the pneumococcal P1623B promoter, which is recognized by MgaSpn, contains DNA motifs that are recognized by H-NS. These motifs are adjacent to regions of potential bendability. Our results suggest that both regulatory proteins recognize similar structural characteristics of DNA.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 21%
Student > Master 2 14%
Professor 1 7%
Other 1 7%
Researcher 1 7%
Other 0 0%
Unknown 6 43%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 21%
Immunology and Microbiology 3 21%
Agricultural and Biological Sciences 1 7%
Unknown 7 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 September 2016.
All research outputs
#18,473,108
of 22,890,496 outputs
Outputs from Frontiers in Molecular Biosciences
#1,963
of 3,814 outputs
Outputs of similar age
#244,856
of 322,600 outputs
Outputs of similar age from Frontiers in Molecular Biosciences
#15
of 32 outputs
Altmetric has tracked 22,890,496 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,814 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 322,600 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 32 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.