↓ Skip to main content

Patterns of Transposable Element Expression and Insertion in Cancer

Overview of attention for article published in Frontiers in Molecular Biosciences, November 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
6 X users

Readers on

mendeley
82 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Patterns of Transposable Element Expression and Insertion in Cancer
Published in
Frontiers in Molecular Biosciences, November 2016
DOI 10.3389/fmolb.2016.00076
Pubmed ID
Authors

Evan A. Clayton, Lu Wang, Lavanya Rishishwar, Jianrong Wang, John F. McDonald, I. King Jordan

Abstract

Human transposable element (TE) activity in somatic tissues causes mutations that can contribute to tumorigenesis. Indeed, TE insertion mutations have been implicated in the etiology of a number of different cancer types. Nevertheless, the full extent of somatic TE activity, along with its relationship to tumorigenesis, have yet to be fully explored. Recent developments in bioinformatics software make it possible to analyze TE expression levels and TE insertional activity directly from transcriptome (RNA-seq) and whole genome (DNA-seq) next-generation sequence data. We applied these new sequence analysis techniques to matched normal and primary tumor patient samples from the Cancer Genome Atlas (TCGA) in order to analyze the patterns of TE expression and insertion for three cancer types: breast invasive carcinoma, head and neck squamous cell carcinoma, and lung adenocarcinoma. Our analysis focused on the three most abundant families of active human TEs: Alu, SVA, and L1. We found evidence for high levels of somatic TE activity for these three families in normal and cancer samples across diverse tissue types. Abundant transcripts for all three TE families were detected in both normal and cancer tissues along with an average of ~80 unique TE insertions per individual patient/tissue. We observed an increase in L1 transcript expression and L1 insertional activity in primary tumor samples for all three cancer types. Tumor-specific TE insertions are enriched for private mutations, consistent with a potentially causal role in tumorigenesis. We used genome feature analysis to investigate two specific cases of putative cancer-causing TE mutations in further detail. An Alu insertion in an upstream enhancer of the CBL tumor suppressor gene is associated with down-regulation of the gene in a single breast cancer patient, and an L1 insertion in the first exon of the BAALC gene also disrupts its expression in head and neck squamous cell carcinoma. Our results are consistent with widespread somatic activity of human TEs leading to numerous insertion mutations that can contribute to tumorigenesis in a variety of tissues.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 82 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 1%
United States 1 1%
Unknown 80 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 19 23%
Student > Ph. D. Student 17 21%
Student > Bachelor 7 9%
Student > Master 5 6%
Lecturer 4 5%
Other 11 13%
Unknown 19 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 35 43%
Agricultural and Biological Sciences 17 21%
Medicine and Dentistry 6 7%
Immunology and Microbiology 3 4%
Computer Science 2 2%
Other 3 4%
Unknown 16 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 February 2017.
All research outputs
#12,974,189
of 22,901,818 outputs
Outputs from Frontiers in Molecular Biosciences
#801
of 3,819 outputs
Outputs of similar age
#133,037
of 270,398 outputs
Outputs of similar age from Frontiers in Molecular Biosciences
#4
of 20 outputs
Altmetric has tracked 22,901,818 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,819 research outputs from this source. They receive a mean Attention Score of 3.3. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 270,398 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.