↓ Skip to main content

Structural and Functional Insights Into Lysostaphin–Substrate Interaction

Overview of attention for article published in Frontiers in Molecular Biosciences, July 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
61 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Structural and Functional Insights Into Lysostaphin–Substrate Interaction
Published in
Frontiers in Molecular Biosciences, July 2018
DOI 10.3389/fmolb.2018.00060
Pubmed ID
Authors

Helena Tossavainen, Vytas Raulinaitis, Linda Kauppinen, Ulla Pentikäinen, Hannu Maaheimo, Perttu Permi

Abstract

Lysostaphin from Staphylococcus simulans and its family enzymes rapidly acquire prominence as the next generation agents in treatment of S. aureus infections. The specificity of lysostaphin is promoted by its C-terminal cell wall targeting domain selectivity toward pentaglycine bridges in S. aureus cell wall. Scission of these cross-links is carried out by its N-terminal catalytic domain, a zinc-dependent endopeptidase. Understanding the determinants affecting the efficiency of catalysis and strength and specificity of interactions lies at the heart of all lysostaphin family enzyme applications. To this end, we have used NMR, SAXS and molecular dynamics simulations to characterize lysostaphin structure and dynamics, to address the inter-domain interaction, the enzyme-substrate interaction as well as the catalytic properties of pentaglycine cleavage in solution. Our NMR structure confirms the recent crystal structure, yet, together with the molecular dynamics simulations, emphasizes the dynamic nature of the loops embracing the catalytic site. We found no evidence for inter-domain interaction, but, interestingly, the SAXS data delineate two preferred conformation subpopulations. Catalytic H329 and H360 were observed to bind a second zinc ion, which reduces lysostaphin pentaglycine cleaving activity. Binding of pentaglycine or its lysine derivatives to the targeting domain was found to be of very low affinity. The pentaglycine interaction site was located to the N-terminal groove of the domain. Notably, the targeting domain binds the peptidoglycan stem peptide Ala-d-γ-Glu-Lys-d-Ala-d-Ala with a much higher, micromolar affinity. Binding site mapping reveals two interaction sites of different affinities on the surface of the domain for this peptide.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 61 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 16%
Student > Ph. D. Student 8 13%
Researcher 7 11%
Student > Bachelor 6 10%
Student > Doctoral Student 4 7%
Other 6 10%
Unknown 20 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 20 33%
Agricultural and Biological Sciences 6 10%
Chemistry 4 7%
Immunology and Microbiology 2 3%
Business, Management and Accounting 1 2%
Other 6 10%
Unknown 22 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 July 2018.
All research outputs
#17,981,442
of 23,094,276 outputs
Outputs from Frontiers in Molecular Biosciences
#1,718
of 3,909 outputs
Outputs of similar age
#236,987
of 327,912 outputs
Outputs of similar age from Frontiers in Molecular Biosciences
#17
of 27 outputs
Altmetric has tracked 23,094,276 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,909 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,912 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 27 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.