↓ Skip to main content

Washout allometric reference method (WARM) for parametric analysis of [11C]PIB in human brains

Overview of attention for article published in Frontiers in Aging Neuroscience, January 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Washout allometric reference method (WARM) for parametric analysis of [11C]PIB in human brains
Published in
Frontiers in Aging Neuroscience, January 2013
DOI 10.3389/fnagi.2013.00045
Pubmed ID
Authors

Anders Rodell, Joel Aanerud, Hans Braendgaard, Albert Gjedde

Abstract

Rapid clearance and disappearance of a tracer from the circulation challenges the determination of the tracer's binding potentials in brain (BP ND) by positron emission tomography (PET). This is the case for the analysis of the binding of radiolabeled [(11)C]Pittsburgh Compound B ([(11)C]PIB) to amyloid-β (Aβ) plaques in brain of patients with Alzheimer's disease (AD). To resolve the issue of rapid clearance from the circulation, we here introduce the flow-independent Washout Allometric Reference Method (WARM) for the analysis of washout and binding of [(11)C]PIB in two groups of human subjects, healthy aged control subjects (HC), and patients suffering from AD, and we compare the results to the outcome of two conventional analysis methods. We also use the rapid initial clearance to obtain a surrogate measure of the rate of cerebral blood flow (CBF), as well as a method of identifying a suitable reference region directly from the [(11)C]PIB signal. The difference of average absolute CBF values between the AD and HC groups was highly significant (P < 0.003). The CBF measures were not significantly different between the groups when normalized to cerebellar gray matter flow. Thus, when flow differences confound conventional measures of [(11)C]PIB binding, the separate estimates of CBF and BP ND provide additional information about possible AD. The results demonstrate the importance of data-driven estimation of CBF and BP ND, as well as reference region detection from the [(11)C]PIB signal. We conclude that the WARM method yields stable measures of BP ND with relative ease, using only integration for noise reduction and no model regression. The method accounts for relative flow differences in the brain tissue and yields a calibrated measure of absolute CBF directly from the [(11)C]PIB signal. Compared to conventional methods, WARM optimizes the Aβ plaque load discrimination between patients with AD and healthy controls (P = 0.009).

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 43 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 26%
Student > Bachelor 3 7%
Professor 2 5%
Researcher 2 5%
Student > Postgraduate 2 5%
Other 6 14%
Unknown 17 40%
Readers by discipline Count As %
Medicine and Dentistry 9 21%
Neuroscience 6 14%
Engineering 3 7%
Physics and Astronomy 2 5%
Psychology 2 5%
Other 2 5%
Unknown 19 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 December 2013.
All research outputs
#15,288,160
of 22,736,112 outputs
Outputs from Frontiers in Aging Neuroscience
#3,572
of 4,744 outputs
Outputs of similar age
#181,584
of 280,808 outputs
Outputs of similar age from Frontiers in Aging Neuroscience
#53
of 77 outputs
Altmetric has tracked 22,736,112 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,744 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.1. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,808 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 77 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.