↓ Skip to main content

The effects of lifelong blindness on murine neuroanatomy and gene expression

Overview of attention for article published in Frontiers in Aging Neuroscience, July 2015
Altmetric Badge

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The effects of lifelong blindness on murine neuroanatomy and gene expression
Published in
Frontiers in Aging Neuroscience, July 2015
DOI 10.3389/fnagi.2015.00144
Pubmed ID
Authors

Charles W. Abbott, Olga O. Kozanian, Kelly J. Huffman

Abstract

Mammalian neocortical development is regulated by neural patterning mechanisms, with distinct sensory and motor areas arising through the process of arealization. This development occurs alongside developing central or peripheral sensory systems. Specifically, the parcellation of neocortex into specific areas of distinct cytoarchitecture, connectivity and function during development is reliant upon both cortically intrinsic mechanisms, such as gene expression, and extrinsic processes, such as input from the sensory receptors. This developmental program shifts from patterning to maintenance as the animal ages and is believed to be active throughout life, where the brain's organization is stable yet plastic. In this study, we characterize the long-term effects of early removal of visual input via bilateral enucleation at birth. To understand the long-term effects of early blindness we conducted anatomical and molecular assays 18 months after enucleation, near the end of lifespan in the mouse. Bilateral enucleation early in life leads to long-term, stable size reductions of the thalamic lateral geniculate nucleus (LGN) and the primary visual cortex (V1) alongside a increase in individual whisker barrel size. Neocortical gene expression in the aging brain has not been previously identified; we document cortical expression of multiple regionalization genes. Expression patterns of Ephrin A5, COUP-TFI, and RZRβ and patterns of intraneocortical connectivity (INC) are altered in the neocortices of aging blind mice. Sensory inputs from different modalities during development likely play a major role in the development of cortical areal and thalamic nuclear boundaries. We suggest that early patterning by prenatal retinal activity combined with persistent gene expression within the thalamus and cortex is sufficient to establish and preserve a small but present LGN and V1 into late adulthood.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 24%
Student > Ph. D. Student 3 18%
Student > Master 3 18%
Student > Bachelor 1 6%
Professor 1 6%
Other 2 12%
Unknown 3 18%
Readers by discipline Count As %
Neuroscience 6 35%
Agricultural and Biological Sciences 3 18%
Biochemistry, Genetics and Molecular Biology 2 12%
Medicine and Dentistry 1 6%
Chemistry 1 6%
Other 0 0%
Unknown 4 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 October 2015.
All research outputs
#17,765,819
of 22,817,213 outputs
Outputs from Frontiers in Aging Neuroscience
#3,794
of 4,774 outputs
Outputs of similar age
#176,861
of 263,414 outputs
Outputs of similar age from Frontiers in Aging Neuroscience
#52
of 63 outputs
Altmetric has tracked 22,817,213 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,774 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.1. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,414 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 63 others from the same source and published within six weeks on either side of this one. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.