↓ Skip to main content

Altered Cortical Synaptic Plasticity in Response to 5-Hz Repetitive Transcranial Magnetic Stimulation as a New Electrophysiological Finding in Amnestic Mild Cognitive Impairment Converting to…

Overview of attention for article published in Frontiers in Aging Neuroscience, January 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • Good Attention Score compared to outputs of the same age and source (74th percentile)

Mentioned by

twitter
11 X users

Readers on

mendeley
91 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Altered Cortical Synaptic Plasticity in Response to 5-Hz Repetitive Transcranial Magnetic Stimulation as a New Electrophysiological Finding in Amnestic Mild Cognitive Impairment Converting to Alzheimer’s Disease: Results from a 4-year Prospective Cohort Study
Published in
Frontiers in Aging Neuroscience, January 2016
DOI 10.3389/fnagi.2015.00253
Pubmed ID
Authors

Alessandro Trebbastoni, Floriana Pichiorri, Fabrizia D’Antonio, Alessandra Campanelli, Emanuela Onesti, Marco Ceccanti, Carlo de Lena, Maurizio Inghilleri

Abstract

To investigate cortical excitability and synaptic plasticity in amnestic mild cognitive impairment (aMCI) using 5 Hz repetitive transcranial magnetic stimulation (5 Hz-rTMS) and to assess whether specific TMS parameters predict conversion time to Alzheimer's disease (AD). Forty aMCI patients (single- and multi-domain) and 20 healthy controls underwent, at baseline, a neuropsychological examination and 5 Hz-rTMS delivered in trains of 10 stimuli and 120% of resting motor threshold (rMT) intensity over the dominant motor area. The rMT and the ratio between amplitude of the 1st and the 10th motor-evoked potential elicited by the train (X/I-MEP ratio) were calculated as measures of cortical excitability and synaptic plasticity, respectively. Patients were followed up annually over a period of 48 months. Analysis of variance for repeated measures was used to compare TMS parameters in patients with those in controls. Spearman's correlation was performed by considering demographic variables, aMCI subtype, neuropsychological test scores, TMS parameters, and conversion time. Thirty-five aMCI subjects completed the study; 60% of these converted to AD. The baseline rMT and X/I-MEP ratio were significantly lower in patients than in controls (p = 0.04 and p = 0.01). Spearman's analysis showed that conversion time correlated with the rMT (0.40) and X/I-MEP ratio (0.51). aMCI patients displayed cortical hyperexcitability and altered synaptic plasticity to 5 Hz-rTMS when compared with healthy subjects. The extent of these changes correlated with conversion time. These alterations, which have previously been observed in AD, are thus present in the early stages of disease and may be considered as potential neurophysiological markers of conversion from aMCI to AD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 91 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 91 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 18 20%
Student > Ph. D. Student 13 14%
Student > Master 10 11%
Student > Doctoral Student 6 7%
Student > Bachelor 6 7%
Other 18 20%
Unknown 20 22%
Readers by discipline Count As %
Neuroscience 23 25%
Psychology 15 16%
Medicine and Dentistry 12 13%
Agricultural and Biological Sciences 5 5%
Social Sciences 4 4%
Other 9 10%
Unknown 23 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 February 2016.
All research outputs
#3,366,192
of 25,292,378 outputs
Outputs from Frontiers in Aging Neuroscience
#1,621
of 5,461 outputs
Outputs of similar age
#55,663
of 407,832 outputs
Outputs of similar age from Frontiers in Aging Neuroscience
#19
of 70 outputs
Altmetric has tracked 25,292,378 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 5,461 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.5. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 407,832 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 70 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.