↓ Skip to main content

Distinct Aging Effects on Functional Networks in Good and Poor Cognitive Performers

Overview of attention for article published in Frontiers in Aging Neuroscience, September 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Distinct Aging Effects on Functional Networks in Good and Poor Cognitive Performers
Published in
Frontiers in Aging Neuroscience, September 2016
DOI 10.3389/fnagi.2016.00215
Pubmed ID
Authors

Annie Lee, Mingzhen Tan, Anqi Qiu

Abstract

Brain network hubs are susceptible to normal aging processes and disruptions of their functional connectivity are detrimental to decline in cognitive functions in older adults. However, it remains unclear how the functional connectivity of network hubs cope with cognitive heterogeneity in an aging population. This study utilized cognitive and resting-state functional magnetic resonance imaging data, cluster analysis, and graph network analysis to examine age-related alterations in the network hubs' functional connectivity of good and poor cognitive performers. Our results revealed that poor cognitive performers showed age-dependent disruptions in the functional connectivity of the right insula and posterior cingulate cortex (PCC), while good cognitive performers showed age-related disruptions in the functional connectivity of the left insula and PCC. Additionally, the left PCC had age-related declines in the functional connectivity with the left medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC). Most interestingly, good cognitive performers showed age-related declines in the functional connectivity of the left insula and PCC with their right homotopic structures. These results may provide insights of neuronal correlates for understanding individual differences in aging. In particular, our study suggests prominent protection roles of the left insula and PCC and bilateral ACC in good performers.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 4%
Unknown 48 96%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 20%
Researcher 7 14%
Student > Ph. D. Student 7 14%
Student > Bachelor 5 10%
Student > Doctoral Student 3 6%
Other 7 14%
Unknown 11 22%
Readers by discipline Count As %
Neuroscience 14 28%
Psychology 11 22%
Agricultural and Biological Sciences 4 8%
Social Sciences 3 6%
Computer Science 2 4%
Other 3 6%
Unknown 13 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 September 2016.
All research outputs
#13,988,427
of 22,886,568 outputs
Outputs from Frontiers in Aging Neuroscience
#3,102
of 4,818 outputs
Outputs of similar age
#184,038
of 330,061 outputs
Outputs of similar age from Frontiers in Aging Neuroscience
#39
of 65 outputs
Altmetric has tracked 22,886,568 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,818 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.0. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,061 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 65 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.