↓ Skip to main content

Identify the Atrophy of Alzheimer’s Disease, Mild Cognitive Impairment and Normal Aging Using Morphometric MRI Analysis

Overview of attention for article published in Frontiers in Aging Neuroscience, October 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • Good Attention Score compared to outputs of the same age and source (68th percentile)

Mentioned by

news
1 news outlet
twitter
3 X users

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identify the Atrophy of Alzheimer’s Disease, Mild Cognitive Impairment and Normal Aging Using Morphometric MRI Analysis
Published in
Frontiers in Aging Neuroscience, October 2016
DOI 10.3389/fnagi.2016.00243
Pubmed ID
Authors

Xiangyu Ma, Zhaoxia Li, Bin Jing, Han Liu, Dan Li, Haiyun Li, the Alzheimer’s Disease Neuroimaging Initiative

Abstract

Quantitatively assessing the medial temporal lobe (MTL) structures atrophy is vital for early diagnosis of Alzheimer's disease (AD) and accurately tracking of the disease progression. Morphometry characteristics such as gray matter volume (GMV) and cortical thickness have been proved to be valuable measurements of brain atrophy. In this study, we proposed a morphometric MRI analysis based method to explore the cross-sectional differences and longitudinal changes of GMV and cortical thickness in patients with AD, MCI (mild cognitive impairment) and the normal elderly. High resolution 3D MRI data was obtained from ADNI database. SPM8 plus DARTEL was carried out for data preprocessing. Two kinds of z-score map were calculated to, respectively, reflect the GMV and cortical thickness decline compared with age-matched normal control database. A volume of interest (VOI) covering MTL structures was defined by group comparison. Within this VOI, GMV, and cortical thickness decline indicators were, respectively, defined as the mean of the negative z-scores and the sum of the normalized negative z-scores of the corresponding z-score map. Kruskal-Wallis test was applied to statistically identify group wise differences of the indicators. Support vector machines (SVM) based prediction was performed with a leave-one-out cross-validation design to evaluate the predictive accuracies of the indicators. Linear least squares estimation was utilized to assess the changing rate of the indicators for the three groups. Cross-sectional comparison of the baseline decline indicators revealed that the GMV and cortical thickness decline were more serious from NC, MCI to AD, with statistic significance. Using a multi-region based SVM model with the two indicators, the discrimination accuracy between AD and NC, MCI and NC, AD and MCI was 92.7, 91.7, and 78.4%, respectively. For three-way prediction, the accuracy was 74.6%. Furthermore, the proposed two indicators could also identify the atrophy rate differences among the three groups in longitudinal analysis. The proposed method could serve as an automatic and time-sparing approach for early diagnosis and tracking the progression of AD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 16%
Student > Master 6 12%
Researcher 5 10%
Student > Bachelor 4 8%
Professor 3 6%
Other 8 16%
Unknown 17 33%
Readers by discipline Count As %
Neuroscience 8 16%
Medicine and Dentistry 5 10%
Psychology 5 10%
Computer Science 2 4%
Sports and Recreations 2 4%
Other 8 16%
Unknown 21 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 November 2016.
All research outputs
#2,813,661
of 22,893,031 outputs
Outputs from Frontiers in Aging Neuroscience
#1,193
of 4,823 outputs
Outputs of similar age
#50,113
of 316,298 outputs
Outputs of similar age from Frontiers in Aging Neuroscience
#23
of 74 outputs
Altmetric has tracked 22,893,031 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,823 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.0. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,298 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 74 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.