↓ Skip to main content

Chronic Monoarthritis Pain Accelerates the Processes of Cognitive Impairment and Increases the NMDAR Subunits NR2B in CA3 of Hippocampus from 5-month-old Transgenic APP/PS1 Mice

Overview of attention for article published in Frontiers in Aging Neuroscience, May 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

news
1 news outlet
twitter
1 X user

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Chronic Monoarthritis Pain Accelerates the Processes of Cognitive Impairment and Increases the NMDAR Subunits NR2B in CA3 of Hippocampus from 5-month-old Transgenic APP/PS1 Mice
Published in
Frontiers in Aging Neuroscience, May 2017
DOI 10.3389/fnagi.2017.00123
Pubmed ID
Authors

Wei-Yi Gong, Rong Wang, Yuan Liu, He Jin, Zhi-Wei Zhao, Yu-Lan Wang, Hong-Yan Li, Xu Zhang, Jia-Xiang Ni

Abstract

Many factors impact cognitive impairment; however, the effects of chronic pain and the mechanisms underlying these effects on cognitive impairment are currently unknown. Here we tested the hypothesis that chronic pain accelerates the transition from normal cognition to mild cognitive impairment (MCI) in 5-month-old transgenic APP/PS1 mice, an animal model of Alzheimer's disease (AD), and that neurotoxicity induced by N-methyl-D-aspartic acid receptor (NMDAR) subunits may be involved in this process. Chronic monoarthritis pain was induced in transgenic APP/PS1 mice and 5-month-old wild-type (WT) mice by intra- and pre-articular injections of Freund's complete adjuvant (FCA) into one knee joint. Pain behavior, learning and memory function, and the distribution and quantity of NMDAR subunits (NR1, NR2A and NR2B) in hippocampal CA1 and CA3 regions were assessed. Our results showed that although persistent and robust monoarthritis pain was induced by the FCA injections, only the transgenic APP/PS1 mice with chronic monoarthritis pain exhibited marked learning and memory impairments. This result suggested that chronic monoarthritis pain accelerated the cognitive impairment process. Furthermore, only transgenic APP/PS1 mice with chronic monoarthritis pain exhibited an overexpression of NR2B and an increased NR2B/NR2A ratio in the hippocampus CA3. These findings suggest that chronic pain is a risk factor for cognitive impairment and that increased neurotoxicity associated with NMDAR subunit activation may underpin the impairment. Thus, NMDARs may be a therapeutic target for the prevention of chronic pain-induced cognitive impairment.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 15%
Researcher 6 15%
Student > Ph. D. Student 5 12%
Student > Master 3 7%
Professor > Associate Professor 2 5%
Other 3 7%
Unknown 16 39%
Readers by discipline Count As %
Neuroscience 10 24%
Medicine and Dentistry 8 20%
Nursing and Health Professions 3 7%
Biochemistry, Genetics and Molecular Biology 1 2%
Unknown 19 46%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 June 2017.
All research outputs
#3,260,752
of 22,973,051 outputs
Outputs from Frontiers in Aging Neuroscience
#1,731
of 4,833 outputs
Outputs of similar age
#60,942
of 310,149 outputs
Outputs of similar age from Frontiers in Aging Neuroscience
#70
of 127 outputs
Altmetric has tracked 22,973,051 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,833 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.1. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,149 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 127 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.