↓ Skip to main content

Visualizing Hyperactivation in Neurodegeneration Based on Prefrontal Oxygenation: A Comparative Study of Mild Alzheimer's Disease, Mild Cognitive Impairment, and Healthy Controls

Overview of attention for article published in Frontiers in Aging Neuroscience, September 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (64th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
2 X users
patent
1 patent

Citations

dimensions_citation
62 Dimensions

Readers on

mendeley
73 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Visualizing Hyperactivation in Neurodegeneration Based on Prefrontal Oxygenation: A Comparative Study of Mild Alzheimer's Disease, Mild Cognitive Impairment, and Healthy Controls
Published in
Frontiers in Aging Neuroscience, September 2017
DOI 10.3389/fnagi.2017.00287
Pubmed ID
Authors

Kah Hui Yap, Wei Chun Ung, Esther G. M. Ebenezer, Nadira Nordin, Pui See Chin, Sandheep Sugathan, Sook Ching Chan, Hung Loong Yip, Masashi Kiguchi, Tong Boon Tang

Abstract

Background: Cognitive performance is relatively well preserved during early cognitive impairment owing to compensatory mechanisms. Methods: We explored functional near-infrared spectroscopy (fNIRS) alongside a semantic verbal fluency task (SVFT) to investigate any compensation exhibited by the prefrontal cortex (PFC) in Mild Cognitive Impairment (MCI) and mild Alzheimer's disease (AD). In addition, a group of healthy controls (HC) was studied. A total of 61 volunteers (31 HC, 12 patients with MCI and 18 patients with mild AD) took part in the present study. Results: Although not statistically significant, MCI exhibited a greater mean activation of both the right and left PFC, followed by HC and mild AD. Analysis showed that in the left PFC, the time taken for HC to achieve the activation level was shorter than MCI and mild AD (p = 0.0047 and 0.0498, respectively); in the right PFC, mild AD took a longer time to achieve the activation level than HC and MCI (p = 0.0469 and 0.0335, respectively); in the right PFC, HC, and MCI demonstrated a steeper slope compared to mild AD (p = 0.0432 and 0. 0107, respectively). The results were, however, not significant when corrected by the Bonferroni-Holm method. There was also found to be a moderately positive correlation (R = 0.5886) between the oxygenation levels in the left PFC and a clinical measure [Mini-Mental State Examination (MMSE) score] in MCI subjects uniquely. Discussion: The hyperactivation in MCI coupled with a better SVFT performance may suggest neural compensation, although it is not known to what degree hyperactivation manifests as a potential indicator of compensatory mechanisms. However, hypoactivation plus a poorer SVFT performance in mild AD might indicate an inability to compensate due to the degree of structural impairment. Conclusion: Consistent with the scaffolding theory of aging and cognition, the task-elicited hyperactivation in MCI might reflect the presence of compensatory mechanisms and hypoactivation in mild AD could reflect an inability to compensate. Future studies will investigate the fNIRS parameters with a larger sample size, and their validity as prognostic biomarkers of neurodegeneration.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 73 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 73 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 14%
Student > Ph. D. Student 10 14%
Researcher 9 12%
Student > Doctoral Student 4 5%
Lecturer 3 4%
Other 11 15%
Unknown 26 36%
Readers by discipline Count As %
Neuroscience 11 15%
Medicine and Dentistry 8 11%
Engineering 7 10%
Psychology 6 8%
Agricultural and Biological Sciences 1 1%
Other 9 12%
Unknown 31 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 February 2023.
All research outputs
#7,757,522
of 25,381,864 outputs
Outputs from Frontiers in Aging Neuroscience
#2,998
of 5,482 outputs
Outputs of similar age
#111,497
of 322,574 outputs
Outputs of similar age from Frontiers in Aging Neuroscience
#38
of 103 outputs
Altmetric has tracked 25,381,864 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 5,482 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.4. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 322,574 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.
We're also able to compare this research output to 103 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.