↓ Skip to main content

Acute Stress Affects the Expression of Hippocampal Mu Oscillations in an Age-Dependent Manner

Overview of attention for article published in Frontiers in Aging Neuroscience, September 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Acute Stress Affects the Expression of Hippocampal Mu Oscillations in an Age-Dependent Manner
Published in
Frontiers in Aging Neuroscience, September 2017
DOI 10.3389/fnagi.2017.00295
Pubmed ID
Authors

Samir Takillah, Jérémie Naudé, Steve Didienne, Claude Sebban, Brigitte Decros, Esther Schenker, Michael Spedding, Alexandre Mourot, Jean Mariani, Philippe Faure

Abstract

Anxiolytic drugs are widely used in the elderly, a population particularly sensitive to stress. Stress, aging and anxiolytics all affect low-frequency oscillations in the hippocampus and prefrontal cortex (PFC) independently, but the interactions between these factors remain unclear. Here, we compared the effects of stress (elevated platform, EP) and anxiolytics (diazepam, DZP) on extracellular field potentials (EFP) in the PFC, parietal cortex and hippocampus (dorsal and ventral parts) of adult (8 months) and aged (18 months) Wistar rats. A potential source of confusion in the experimental studies in rodents comes from locomotion-related theta (6-12 Hz) oscillations, which may overshadow the direct effects of anxiety on low-frequency and especially on the high-amplitude oscillations in the Mu range (7-12 Hz), related to arousal. Animals were restrained to avoid any confound and isolate the direct effects of stress from theta oscillations related to stress-induced locomotion. We identified transient, high-amplitude oscillations in the 7-12 Hz range ("Mu-bursts") in the PFC, parietal cortex and only in the dorsal part of hippocampus. At rest, aged rats displayed more Mu-bursts than adults. Stress acted differently on Mu-bursts depending on age: it increases vs. decreases burst, in adult and aged animals, respectively. In contrast DZP (1 mg/kg) acted the same way in stressed adult and age animal: it decreased the occurrence of Mu-bursts, as well as their co-occurrence. This is consistent with DZP acting as a positive allosteric modulator of GABAA receptors, which globally potentiates inhibition and has anxiolytic effects. Overall, the effect of benzodiazepines on stressed animals was to restore Mu burst activity in adults but to strongly diminish them in aged rats. This work suggests Mu-bursts as a neural marker to study the impact of stress and DZP on age.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 20%
Researcher 6 20%
Student > Master 4 13%
Student > Doctoral Student 3 10%
Lecturer > Senior Lecturer 1 3%
Other 4 13%
Unknown 6 20%
Readers by discipline Count As %
Neuroscience 7 23%
Psychology 5 17%
Medicine and Dentistry 3 10%
Pharmacology, Toxicology and Pharmaceutical Science 2 7%
Agricultural and Biological Sciences 2 7%
Other 4 13%
Unknown 7 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 September 2017.
All research outputs
#13,334,970
of 23,002,898 outputs
Outputs from Frontiers in Aging Neuroscience
#2,884
of 4,839 outputs
Outputs of similar age
#156,026
of 318,503 outputs
Outputs of similar age from Frontiers in Aging Neuroscience
#43
of 97 outputs
Altmetric has tracked 23,002,898 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,839 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.1. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,503 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 97 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.