↓ Skip to main content

Effect of Speed of Processing Training on Older Driver Screening Measures

Overview of attention for article published in Frontiers in Aging Neuroscience, October 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
63 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effect of Speed of Processing Training on Older Driver Screening Measures
Published in
Frontiers in Aging Neuroscience, October 2017
DOI 10.3389/fnagi.2017.00338
Pubmed ID
Authors

Ranmalee Eramudugolla, Kim M Kiely, Sidhant Chopra, Kaarin J Anstey

Abstract

Objective: Computerized training for cognitive enhancement is of great public interest, however, there is inconsistent evidence for the transfer of training gains to every day activity. Several large trials have focused on speed of processing (SOP) training with some promising findings for long-term effects on daily activity, but no immediate transfer to other cognitive tests. Here, we examine the transfer of SOP training gains to cognitive measures that are known predictors of driving safety in older adults. Methods: Fifty-three adults aged 65-87 years who were current drivers participated in a two group non-randomized design with repeated measures and a no-contact matched control group. The Intervention group completed an average of 7.9 (SD = 3.0) hours of self-administered online SOP training at home. Control group was matched on age, gender and test-re-test interval. Measures included the Useful Field of View (UFOV) test, a Hazard Perception test, choice reaction time (Cars RT), Trail Making Test B, a Maze test, visual motion threshold, as well as road craft and road knowledge tests. Results: Speed of processing training resulted in significant improvement in processing speed on the UFOV test relative to controls, with an average change of -45.8 ms (SE = 14.5), and effect size of ω(2) = 0.21. Performance on the Maze test also improved, but significant slowing on the Hazard Perception test was observed after SOP training. Training effects on the UFOV task was associated with similar effects on the Cars RT, but not the Hazard Perception and Maze tests, suggesting transfer to some but not all driving related measures. There were no effects of training on any of the other measures examined. Conclusion: Speed of processing training effects on the UFOV task can be achieved with self-administered, online training at home, with some transfer to other cognitive tests. However, differential effects of training may be observed for tasks requiring goal-directed search strategies rather than diffuse attention.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 63 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 63 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 13%
Researcher 8 13%
Student > Bachelor 7 11%
Student > Master 5 8%
Professor 4 6%
Other 10 16%
Unknown 21 33%
Readers by discipline Count As %
Psychology 14 22%
Nursing and Health Professions 6 10%
Medicine and Dentistry 5 8%
Neuroscience 5 8%
Engineering 3 5%
Other 4 6%
Unknown 26 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 October 2017.
All research outputs
#14,304,074
of 23,006,268 outputs
Outputs from Frontiers in Aging Neuroscience
#3,217
of 4,843 outputs
Outputs of similar age
#179,991
of 326,544 outputs
Outputs of similar age from Frontiers in Aging Neuroscience
#62
of 102 outputs
Altmetric has tracked 23,006,268 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,843 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.1. This one is in the 32nd percentile – i.e., 32% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,544 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 102 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.