↓ Skip to main content

Prebiotic Effect of Fructooligosaccharides from Morinda officinalis on Alzheimer’s Disease in Rodent Models by Targeting the Microbiota-Gut-Brain Axis

Overview of attention for article published in Frontiers in Aging Neuroscience, December 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

blogs
1 blog
twitter
21 X users
patent
5 patents

Citations

dimensions_citation
162 Dimensions

Readers on

mendeley
228 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Prebiotic Effect of Fructooligosaccharides from Morinda officinalis on Alzheimer’s Disease in Rodent Models by Targeting the Microbiota-Gut-Brain Axis
Published in
Frontiers in Aging Neuroscience, December 2017
DOI 10.3389/fnagi.2017.00403
Pubmed ID
Authors

Diling Chen, Xin Yang, Jian Yang, Guoxiao Lai, Tianqiao Yong, Xiaocui Tang, Ou Shuai, Gailian Zhou, Yizhen Xie, Qingping Wu

Abstract

Gut microbiota influences the central nervous system disorders such as Alzheimer's disease (AD). The prebiotics and probiotics can improve the host cognition. A previous study demonstrated that fructooligosaccharides from Morinda officinalis (OMO) exert effective memory improvements in AD-like animals, thereby considered as potential prebiotics; however, the underlying mechanism still remains enigma. Thus, the present study investigated whether OMO is effective in alleviating AD by targeting the microbiota-gut-brain axis. OMO was administered in rats with AD-like symptoms (D-galactose- and Aβ1-42-induced deficient rats). Significant and systematic deterioration in AD-like animals were identified, including learning and memory abilities, histological changes, production of cytokines, and microbial community shifts. Behavioral experiments demonstrated that OMO administration can ameliorate the learning and memory abilities in both AD-like animals significantly. AD parameters showed that OMO administration cannot only improve oxidative stress and inflammation disorder, but also regulate the synthesis and secretion of neurotransmitter. Histological changes indicated that OMO administration ameliorates the swelling of brain tissues, neuronal apoptosis, and down-regulation of the expression of AD intracellular markers (Tau and Aβ1-42). 16S rRNA sequencing of gut microbiota indicated that OMO administration maintains the diversity and stability of the microbial community. In addition, OMO regulated the composition and metabolism of gut microbiota in inflammatory bowel disease (IBD) mice model treated by overdosed antibiotics and thus showed the prebiotic potential. Moreover, gut microbiota plays a major role in neurodevelopment, leading to alterations in gene expression in critical brain and intestinal regions, thereby resulting in perturbation to the programming of normal cognitive behaviors. Taken together, our findings suggest that the therapeutic effect of the traditional medicine, M. officinalis, on various neurological diseases such as AD, is at least partially contributed by its naturally occurring chemical constituent, OMO, via modulating the interaction between gut ecology and brain physiology.

X Demographics

X Demographics

The data shown below were collected from the profiles of 21 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 228 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 228 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 30 13%
Researcher 25 11%
Student > Bachelor 23 10%
Student > Master 18 8%
Other 12 5%
Other 41 18%
Unknown 79 35%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 26 11%
Agricultural and Biological Sciences 18 8%
Medicine and Dentistry 16 7%
Neuroscience 16 7%
Pharmacology, Toxicology and Pharmaceutical Science 12 5%
Other 44 19%
Unknown 96 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 26. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 December 2023.
All research outputs
#1,479,986
of 25,523,622 outputs
Outputs from Frontiers in Aging Neuroscience
#368
of 5,533 outputs
Outputs of similar age
#32,847
of 446,488 outputs
Outputs of similar age from Frontiers in Aging Neuroscience
#8
of 107 outputs
Altmetric has tracked 25,523,622 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 5,533 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.5. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 446,488 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 107 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.