↓ Skip to main content

α-Synuclein Aggregated with Tau and β-Amyloid in Human Platelets from Healthy Subjects: Correlation with Physical Exercise

Overview of attention for article published in Frontiers in Aging Neuroscience, January 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
6 X users

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
α-Synuclein Aggregated with Tau and β-Amyloid in Human Platelets from Healthy Subjects: Correlation with Physical Exercise
Published in
Frontiers in Aging Neuroscience, January 2018
DOI 10.3389/fnagi.2018.00017
Pubmed ID
Authors

Simona Daniele, Deborah Pietrobono, Jonathan Fusi, Annalisa Lo Gerfo, Eugenio Cerri, Lucia Chico, Caterina Iofrida, Lucia Petrozzi, Filippo Baldacci, Chiara Giacomelli, Fabio Galetta, Gabriele Siciliano, Ubaldo Bonuccelli, Maria L. Trincavelli, Ferdinando Franzoni, Claudia Martini

Abstract

The loss of protein homeostasis that has been associated with aging leads to altered levels and conformational instability of proteins, which tend to form toxic aggregates. In particular, brain aging presents characteristic patterns of misfolded oligomers, primarily constituted of β-amyloid (Aβ), tau, and α-synuclein (α-syn), which can accumulate in neuronal membranes or extracellular compartments. Such aging-related proteins can also reach peripheral compartments, thus suggesting the possibility to monitor their accumulation in more accessible fluids. In this respect, we have demonstrated that α-syn forms detectable hetero-aggregates with Aβ or tau in red blood cells (RBCs) of healthy subjects. In particular, α-syn levels and its heteromeric interactions are modulated by plasma antioxidant capability (AOC), which increases in turn with physical activity. In order to understand if a specific distribution of misfolded proteins can occur in other blood cells, a cohort of human subjects was enrolled to establish a correlation among AOC, the level of physical exercise and the concentrations of aging-related proteins in platelets. The healthy subjects were divided depending on their level of physical exercise (i.e., athletes and sedentary subjects) and their age (young and older subjects). Herein, aging-related proteins (i.e., α-syn, tau and Aβ) were confirmed to be present in human platelets. Among such proteins, platelet tau concentration was demonstrated to decrease in athletes, while α-syn and Aβ did not correlate with physical exercise. For the first time, α-syn was shown to directly interact with Aβ and tau in platelets, forming detectable hetero-complexes. Interestingly, α-syn interaction with tau was inversely related to plasma AOC and to the level of physical activity. These results suggested that α-syn heterocomplexes, particularly with tau, could represent novel indicators to monitor aging-related proteins in platelets.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 20%
Student > Postgraduate 4 10%
Student > Master 4 10%
Student > Bachelor 3 8%
Professor 3 8%
Other 10 25%
Unknown 8 20%
Readers by discipline Count As %
Neuroscience 11 28%
Biochemistry, Genetics and Molecular Biology 8 20%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Sports and Recreations 2 5%
Medicine and Dentistry 2 5%
Other 4 10%
Unknown 11 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 May 2019.
All research outputs
#13,373,196
of 23,577,654 outputs
Outputs from Frontiers in Aging Neuroscience
#2,947
of 4,972 outputs
Outputs of similar age
#210,146
of 442,851 outputs
Outputs of similar age from Frontiers in Aging Neuroscience
#55
of 97 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,972 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.4. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,851 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 97 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.