↓ Skip to main content

The maturation of auditory responses in infants and young children: a cross-sectional study from 6 to 59 months

Overview of attention for article published in Frontiers in Neuroanatomy, October 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The maturation of auditory responses in infants and young children: a cross-sectional study from 6 to 59 months
Published in
Frontiers in Neuroanatomy, October 2015
DOI 10.3389/fnana.2015.00131
Pubmed ID
Authors

J. Christopher Edgar, Rebecca Murray, Emily S. Kuschner, Kevin Pratt, Douglas N. Paulson, John Dell, Rachel Golembski, Peter Lam, Luke Bloy, William Gaetz, Timothy P. L. Roberts

Abstract

An understanding of the maturation of auditory cortex responses in typically developing infants and toddlers is needed to later identify auditory processing abnormalities in infants at risk for neurodevelopmental disorders. The availability of infant and young child magnetoencephalography (MEG) systems may now provide near optimal assessment of left and right hemisphere auditory neuromagnetic responses in young populations. To assess the performance of a novel whole-head infant MEG system, a cross-sectional study examined the maturation of left and right auditory cortex responses in children 6- to 59-months of age. Blocks of 1000 Hz (1st and 3rd blocks) and 500 Hz tones (2nd block) were presented while MEG data were recorded using an infant/young child biomagnetometer (Artemis 123). Data were obtained from 29 children (11 males; 6- to 59-months). Latency measures were obtained for the first positive-to-negative evoked response waveform complex in each hemisphere. Latency and age associations as well as frequency and hemisphere latency differences were examined. For the 1000 Hz tone, measures of reliability were computed. For the first response-a response with a "P2m" topography-latencies decreased as a function of age. For the second response-a response with a "N2m" topography-no N2m latency and age relationships were observed. A main effect of tone frequency showed earlier P2m responses for 1st 1000 Hz (150 ms) and 2nd 1000 Hz (148 ms) vs. 500 Hz tones (162 ms). A significant main effect of hemisphere showed earlier N2m responses for 2nd 1000 Hz (226 ms) vs. 1st 1000 Hz (241 ms) vs. 500 Hz tones (265 ms). P2m and N2m interclass correlation coefficient latency findings were as follows: left P2m (0.72, p < 0.001), right P2m (0.84, p < 0.001), left N2m (0.77, p < 0.001), and right N2m (0.77,p < 0.01). Findings of strong age and latency associations, sensitivity to tone frequency, and good test-retest reliability support the viability of longitudinal infant MEG studies that include younger as well as older participants as well as studies examining auditory processing abnormalities in infants at risk for neurodevelopmental disorders.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Italy 1 2%
Unknown 42 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 14%
Student > Ph. D. Student 6 14%
Student > Master 5 12%
Student > Doctoral Student 3 7%
Student > Bachelor 3 7%
Other 5 12%
Unknown 15 35%
Readers by discipline Count As %
Neuroscience 7 16%
Medicine and Dentistry 5 12%
Linguistics 3 7%
Nursing and Health Professions 3 7%
Psychology 3 7%
Other 6 14%
Unknown 16 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 October 2015.
All research outputs
#17,775,656
of 22,830,751 outputs
Outputs from Frontiers in Neuroanatomy
#863
of 1,160 outputs
Outputs of similar age
#188,662
of 280,050 outputs
Outputs of similar age from Frontiers in Neuroanatomy
#26
of 37 outputs
Altmetric has tracked 22,830,751 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,160 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.0. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,050 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.