↓ Skip to main content

The Brainstem in Emotion: A Review

Overview of attention for article published in Frontiers in Neuroanatomy, March 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#41 of 1,217)
  • High Attention Score compared to outputs of the same age (93rd percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

news
2 news outlets
blogs
1 blog
twitter
24 X users
wikipedia
1 Wikipedia page

Readers on

mendeley
312 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Brainstem in Emotion: A Review
Published in
Frontiers in Neuroanatomy, March 2017
DOI 10.3389/fnana.2017.00015
Pubmed ID
Authors

Anand Venkatraman, Brian L. Edlow, Mary Helen Immordino-Yang

Abstract

Emotions depend upon the integrated activity of neural networks that modulate arousal, autonomic function, motor control, and somatosensation. Brainstem nodes play critical roles in each of these networks, but prior studies of the neuroanatomic basis of emotion, particularly in the human neuropsychological literature, have mostly focused on the contributions of cortical rather than subcortical structures. Given the size and complexity of brainstem circuits, elucidating their structural and functional properties involves technical challenges. However, recent advances in neuroimaging have begun to accelerate research into the brainstem's role in emotion. In this review, we provide a conceptual framework for neuroscience, psychology and behavioral science researchers to study brainstem involvement in human emotions. The "emotional brainstem" is comprised of three major networks - Ascending, Descending and Modulatory. The Ascending network is composed chiefly of the spinothalamic tracts and their projections to brainstem nuclei, which transmit sensory information from the body to rostral structures. The Descending motor network is subdivided into medial projections from the reticular formation that modulate the gain of inputs impacting emotional salience, and lateral projections from the periaqueductal gray, hypothalamus and amygdala that activate characteristic emotional behaviors. Finally, the brainstem is home to a group of modulatory neurotransmitter pathways, such as those arising from the raphe nuclei (serotonergic), ventral tegmental area (dopaminergic) and locus coeruleus (noradrenergic), which form a Modulatory network that coordinates interactions between the Ascending and Descending networks. Integration of signaling within these three networks occurs at all levels of the brainstem, with progressively more complex forms of integration occurring in the hypothalamus and thalamus. These intermediary structures, in turn, provide input for the most complex integrations, which occur in the frontal, insular, cingulate and other regions of the cerebral cortex. Phylogenetically older brainstem networks inform the functioning of evolutionarily newer rostral regions, which in turn regulate and modulate the older structures. Via these bidirectional interactions, the human brainstem contributes to the evaluation of sensory information and triggers fixed-action pattern responses that together constitute the finely differentiated spectrum of possible emotions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 24 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 312 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 <1%
Russia 1 <1%
Portugal 1 <1%
Germany 1 <1%
Unknown 308 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 49 16%
Student > Ph. D. Student 43 14%
Student > Master 27 9%
Student > Bachelor 27 9%
Professor 22 7%
Other 74 24%
Unknown 70 22%
Readers by discipline Count As %
Neuroscience 70 22%
Psychology 44 14%
Medicine and Dentistry 35 11%
Agricultural and Biological Sciences 17 5%
Computer Science 7 2%
Other 48 15%
Unknown 91 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 37. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 April 2023.
All research outputs
#1,015,318
of 24,143,470 outputs
Outputs from Frontiers in Neuroanatomy
#41
of 1,217 outputs
Outputs of similar age
#21,491
of 311,577 outputs
Outputs of similar age from Frontiers in Neuroanatomy
#3
of 32 outputs
Altmetric has tracked 24,143,470 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,217 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.9. This one has done particularly well, scoring higher than 96% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,577 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 32 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.