↓ Skip to main content

Pro-cognitive drug effects modulate functional brain network organization

Overview of attention for article published in Frontiers in Behavioral Neuroscience, January 2012
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
3 X users
googleplus
1 Google+ user

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
89 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Pro-cognitive drug effects modulate functional brain network organization
Published in
Frontiers in Behavioral Neuroscience, January 2012
DOI 10.3389/fnbeh.2012.00053
Pubmed ID
Authors

Carsten Giessing, Christiane M. Thiel

Abstract

Previous studies document that cholinergic and noradrenergic drugs improve attention, memory and cognitive control in healthy subjects and patients with neuropsychiatric disorders. In humans neural mechanisms of cholinergic and noradrenergic modulation have mainly been analyzed by investigating drug-induced changes of task-related neural activity measured with functional magnetic resonance imaging (fMRI). Endogenous neural activity has often been neglected. Further, although drugs affect the coupling between neurons, only a few human studies have explicitly addressed how drugs modulate the functional connectome, i.e., the functional neural interactions within the brain. These studies have mainly focused on synchronization or correlation of brain activations. Recently, there are some drug studies using graph theory and other new mathematical approaches to model the brain as a complex network of interconnected processing nodes. Using such measures it is possible to detect not only focal, but also subtle, widely distributed drug effects on functional network topology. Most important, graph theoretical measures also quantify whether drug-induced changes in topology or network organization facilitate or hinder information processing. Several studies could show that functional brain integration is highly correlated with behavioral performance suggesting that cholinergic and noradrenergic drugs which improve measures of cognitive performance should increase functional network integration. The purpose of this paper is to show that graph theory provides a mathematical tool to develop theory-driven biomarkers of pro-cognitive drug effects, and also to discuss how these approaches can contribute to the understanding of the role of cholinergic and noradrenergic modulation in the human brain. Finally we discuss the "global workspace" theory as a theoretical framework of pro-cognitive drug effects and argue that pro-cognitive effects of cholinergic and noradrenergic drugs might be related to higher network integration.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 89 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 2%
United Kingdom 1 1%
India 1 1%
Unknown 85 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 19 21%
Student > Ph. D. Student 19 21%
Student > Master 12 13%
Professor > Associate Professor 8 9%
Student > Bachelor 6 7%
Other 15 17%
Unknown 10 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 17%
Neuroscience 13 15%
Medicine and Dentistry 12 13%
Psychology 12 13%
Computer Science 4 4%
Other 18 20%
Unknown 15 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 June 2013.
All research outputs
#13,134,992
of 22,675,759 outputs
Outputs from Frontiers in Behavioral Neuroscience
#1,515
of 3,144 outputs
Outputs of similar age
#145,200
of 244,088 outputs
Outputs of similar age from Frontiers in Behavioral Neuroscience
#29
of 67 outputs
Altmetric has tracked 22,675,759 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,144 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.3. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,088 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 67 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.