↓ Skip to main content

Non-parametric Algorithm to Isolate Chunks in Response Sequences

Overview of attention for article published in Frontiers in Behavioral Neuroscience, September 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Non-parametric Algorithm to Isolate Chunks in Response Sequences
Published in
Frontiers in Behavioral Neuroscience, September 2016
DOI 10.3389/fnbeh.2016.00177
Pubmed ID
Authors

Andrea Alamia, Oleg Solopchuk, Etienne Olivier, Alexandre Zenon

Abstract

Chunking consists in grouping items of a sequence into small clusters, named chunks, with the assumed goal of lessening working memory load. Despite extensive research, the current methods used to detect chunks, and to identify different chunking strategies, remain discordant and difficult to implement. Here, we propose a simple and reliable method to identify chunks in a sequence and to determine their stability across blocks. This algorithm is based on a ranking method and its major novelty is that it provides concomitantly both the features of individual chunk in a given sequence, and an overall index that quantifies the chunking pattern consistency across sequences. The analysis of simulated data confirmed the validity of our method in different conditions of noise, chunk lengths and chunk numbers; moreover, we found that this algorithm was particularly efficient in the noise range observed in real data, provided that at least 4 sequence repetitions were included in each experimental block. Furthermore, we applied this algorithm to actual reaction time series gathered from 3 published experiments and were able to confirm the findings obtained in the original reports. In conclusion, this novel algorithm is easy to implement, is robust to outliers and provides concurrent and reliable estimation of chunk position and chunking dynamics, making it useful to study both sequence-specific and general chunking effects. The algorithm is available at: https://github.com/artipago/Non-parametric-algorithm-to-isolate-chunks-in-response-sequences.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 37%
Researcher 4 21%
Student > Bachelor 3 16%
Professor 2 11%
Student > Master 1 5%
Other 1 5%
Unknown 1 5%
Readers by discipline Count As %
Neuroscience 5 26%
Psychology 4 21%
Medicine and Dentistry 3 16%
Agricultural and Biological Sciences 2 11%
Linguistics 1 5%
Other 0 0%
Unknown 4 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 September 2016.
All research outputs
#18,469,995
of 22,886,568 outputs
Outputs from Frontiers in Behavioral Neuroscience
#2,611
of 3,188 outputs
Outputs of similar age
#243,471
of 320,656 outputs
Outputs of similar age from Frontiers in Behavioral Neuroscience
#47
of 59 outputs
Altmetric has tracked 22,886,568 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,188 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.3. This one is in the 10th percentile – i.e., 10% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,656 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 59 others from the same source and published within six weeks on either side of this one. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.