↓ Skip to main content

Audiovisual Temporal Processing and Synchrony Perception in the Rat

Overview of attention for article published in Frontiers in Behavioral Neuroscience, January 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Audiovisual Temporal Processing and Synchrony Perception in the Rat
Published in
Frontiers in Behavioral Neuroscience, January 2017
DOI 10.3389/fnbeh.2016.00246
Pubmed ID
Authors

Ashley L. Schormans, Kaela E. Scott, Albert M. Q. Vo, Anna Tyker, Marei Typlt, Daniel Stolzberg, Brian L. Allman

Abstract

Extensive research on humans has improved our understanding of how the brain integrates information from our different senses, and has begun to uncover the brain regions and large-scale neural activity that contributes to an observer's ability to perceive the relative timing of auditory and visual stimuli. In the present study, we developed the first behavioral tasks to assess the perception of audiovisual temporal synchrony in rats. Modeled after the parameters used in human studies, separate groups of rats were trained to perform: (1) a simultaneity judgment task in which they reported whether audiovisual stimuli at various stimulus onset asynchronies (SOAs) were presented simultaneously or not; and (2) a temporal order judgment task in which they reported whether they perceived the auditory or visual stimulus to have been presented first. Furthermore, using in vivo electrophysiological recordings in the lateral extrastriate visual (V2L) cortex of anesthetized rats, we performed the first investigation of how neurons in the rat multisensory cortex integrate audiovisual stimuli presented at different SOAs. As predicted, rats (n = 7) trained to perform the simultaneity judgment task could accurately (~80%) identify synchronous vs. asynchronous (200 ms SOA) trials. Moreover, the rats judged trials at 10 ms SOA to be synchronous, whereas the majority (~70%) of trials at 100 ms SOA were perceived to be asynchronous. During the temporal order judgment task, rats (n = 7) perceived the synchronous audiovisual stimuli to be "visual first" for ~52% of the trials, and calculation of the smallest timing interval between the auditory and visual stimuli that could be detected in each rat (i.e., the just noticeable difference (JND)) ranged from 77 ms to 122 ms. Neurons in the rat V2L cortex were sensitive to the timing of audiovisual stimuli, such that spiking activity was greatest during trials when the visual stimulus preceded the auditory by 20-40 ms. Ultimately, given that our behavioral and electrophysiological results were consistent with studies conducted on human participants and previous recordings made in multisensory brain regions of different species, we suggest that the rat represents an effective model for studying audiovisual temporal synchrony at both the neuronal and perceptual level.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 3%
Poland 1 2%
Unknown 56 95%

Demographic breakdown

Readers by professional status Count As %
Student > Master 13 22%
Student > Ph. D. Student 11 19%
Student > Bachelor 8 14%
Researcher 7 12%
Student > Doctoral Student 4 7%
Other 6 10%
Unknown 10 17%
Readers by discipline Count As %
Neuroscience 17 29%
Psychology 9 15%
Agricultural and Biological Sciences 6 10%
Biochemistry, Genetics and Molecular Biology 3 5%
Computer Science 3 5%
Other 9 15%
Unknown 12 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 September 2020.
All research outputs
#13,497,418
of 22,914,829 outputs
Outputs from Frontiers in Behavioral Neuroscience
#1,632
of 3,190 outputs
Outputs of similar age
#212,010
of 421,268 outputs
Outputs of similar age from Frontiers in Behavioral Neuroscience
#33
of 61 outputs
Altmetric has tracked 22,914,829 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,190 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.3. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,268 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 61 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.