↓ Skip to main content

Influence of Concurrent Finger Movements on Transcranial Direct Current Stimulation (tDCS)-Induced Aftereffects

Overview of attention for article published in Frontiers in Behavioral Neuroscience, September 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (72nd percentile)
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

twitter
12 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Influence of Concurrent Finger Movements on Transcranial Direct Current Stimulation (tDCS)-Induced Aftereffects
Published in
Frontiers in Behavioral Neuroscience, September 2017
DOI 10.3389/fnbeh.2017.00169
Pubmed ID
Authors

Yuichiro Shirota, Daniella Terney, Andrea Antal, Walter Paulus

Abstract

Transcranial direct current stimulation (tDCS) has been reported to have bidirectional influence on the amplitude of motor-evoked potentials (MEPs) in resting participants in a polarity-specific manner: anodal tDCS increased and cathodal tDCS decreased them. More recently, the effects of tDCS have been shown to depend on a number of additional factors. We investigated whether a small variety of movements involving target and non-target muscles could differentially modify the efficacy of tDCS. MEPs were elicited from the right first dorsal interosseous muscle, defined as the target muscle, by single pulse transcranial magnetic stimulation (TMS) over the primary motor cortex (M1). During M1 tDCS, which lasted for 10 min applying anodal, cathodal, or sham condition, the participants were instructed to squeeze a ball with their right hand (Task 1), to move their right index finger only in the medial (Task 2), in the lateral direction (Task 3), or in medial and lateral direction alternatively (Task 4). Anodal tDCS reduced MEP amplitudes measured in Task 1 and Task 2, but to a lesser extent in the latter. In Task 3, anodal tDCS led to greater MEP amplitudes than cathodal stimulation. Alternating movements resulted in no effect of tDCS on MEP amplitude (Task 4). The results are congruent with the current notion that the aftereffects of tDCS are highly variable relying on a number of factors including the type of movements executed during stimulation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 33%
Researcher 8 20%
Student > Master 3 8%
Student > Doctoral Student 2 5%
Student > Bachelor 2 5%
Other 4 10%
Unknown 8 20%
Readers by discipline Count As %
Neuroscience 10 25%
Psychology 7 18%
Medicine and Dentistry 6 15%
Engineering 2 5%
Agricultural and Biological Sciences 2 5%
Other 2 5%
Unknown 11 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 October 2017.
All research outputs
#6,326,077
of 25,703,943 outputs
Outputs from Frontiers in Behavioral Neuroscience
#887
of 3,485 outputs
Outputs of similar age
#89,401
of 324,466 outputs
Outputs of similar age from Frontiers in Behavioral Neuroscience
#21
of 65 outputs
Altmetric has tracked 25,703,943 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,485 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.6. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,466 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 65 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.