↓ Skip to main content

Sex Differences in Risk Preference and c-Fos Expression in Paraventricular Thalamic Nucleus of Rats During Gambling Task

Overview of attention for article published in Frontiers in Behavioral Neuroscience, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
4 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Sex Differences in Risk Preference and c-Fos Expression in Paraventricular Thalamic Nucleus of Rats During Gambling Task
Published in
Frontiers in Behavioral Neuroscience, April 2018
DOI 10.3389/fnbeh.2018.00068
Pubmed ID
Authors

Hironori Ishii, Mariko Onodera, Shinya Ohara, Ken-Ichiro Tsutsui, Toshio Iijima

Abstract

Different biological requirements between males and females may cause sex differences in decision preference when choosing between taking a risk to get a higher gain or taking a lower but sure gain. Several studies have tested this assumption in rats, however the conclusion remains controversial because the previous real-world like gambling tasks contained a learning component to track a global payoff of probabilistic outcome in addition to risk preference. Therefore, we modified a simple gambling task allowing us to exclude such learning effect, and investigated the sex difference in risk preference of rats and its neural basis. The task required water deprived rats to choose between a risky option which provided four drops of water or no reward at a 50% random chance vs. a sure option which provided predictable amount x (x = 1, 2, 3, 4). The amount and the risk were explicitly instructed so that different choice conditions could be tested trial by trial without re-learning of reward contingency. Although both sexes correctly chose the sure option with the same level of accuracy when the sure option provided the best offer (x = 4), they exhibited different choice performances when two options had the same expected value (x = 2). Males and females both preferred to take risky choices than sure choices (risk seeking), but males were more risk seeking than females. Outcome-history analysis of their choice pattern revealed that females reduced their risk preference after losing risky choices, whereas males did not. Rather, as losses continued, reaction time for subsequent risky choices got shorter in males. Given that significant sex difference features mainly emerged after negative experiences, male and female rats may evaluate an unsuccessful outcome of their decision in different manners. Furthermore, c-Fos expression in the paraventricular nucleus of the thalamus (PV) was higher in the gambling task than for the control task in males while c-fos levels did not differ in females. The present study provides a clear evidence of sex differences in risk preference in rats and suggests that the PV is a candidate region contributing to sex differences in risky decision making.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 21%
Student > Bachelor 6 18%
Student > Master 5 15%
Student > Ph. D. Student 5 15%
Student > Doctoral Student 2 6%
Other 2 6%
Unknown 7 21%
Readers by discipline Count As %
Neuroscience 11 32%
Psychology 8 24%
Agricultural and Biological Sciences 2 6%
Economics, Econometrics and Finance 1 3%
Medicine and Dentistry 1 3%
Other 3 9%
Unknown 8 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 April 2018.
All research outputs
#14,970,944
of 23,028,364 outputs
Outputs from Frontiers in Behavioral Neuroscience
#2,051
of 3,202 outputs
Outputs of similar age
#198,775
of 329,214 outputs
Outputs of similar age from Frontiers in Behavioral Neuroscience
#56
of 75 outputs
Altmetric has tracked 23,028,364 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,202 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.3. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,214 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 75 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.