↓ Skip to main content

Joint Learning of Binocularly Driven Saccades and Vergence by Active Efficient Coding

Overview of attention for article published in Frontiers in Neurorobotics, November 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Joint Learning of Binocularly Driven Saccades and Vergence by Active Efficient Coding
Published in
Frontiers in Neurorobotics, November 2017
DOI 10.3389/fnbot.2017.00058
Pubmed ID
Authors

Qingpeng Zhu, Jochen Triesch, Bertram E. Shi

Abstract

This paper investigates two types of eye movements: vergence and saccades. Vergence eye movements are responsible for bringing the images of the two eyes into correspondence, whereas saccades drive gaze to interesting regions in the scene. Control of both vergence and saccades develops during early infancy. To date, these two types of eye movements have been studied separately. Here, we propose a computational model of an active vision system that integrates these two types of eye movements. We hypothesize that incorporating a saccade strategy driven by bottom-up attention will benefit the development of vergence control. The integrated system is based on the active efficient coding framework, which describes the joint development of sensory-processing and eye movement control to jointly optimize the coding efficiency of the sensory system. In the integrated system, we propose a binocular saliency model to drive saccades based on learned binocular feature extractors, which simultaneously encode both depth and texture information. Saliency in our model also depends on the current fixation point. This extends prior work, which focused on monocular images and saliency measures that are independent of the current fixation. Our results show that the proposed saliency-driven saccades lead to better vergence performance and faster learning in the overall system than random saccades. Faster learning is significant because it indicates that the system actively selects inputs for the most effective learning. This work suggests that saliency-driven saccades provide a scaffold for the development of vergence control during infancy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 2 20%
Student > Ph. D. Student 2 20%
Researcher 2 20%
Student > Doctoral Student 1 10%
Student > Postgraduate 1 10%
Other 0 0%
Unknown 2 20%
Readers by discipline Count As %
Computer Science 2 20%
Neuroscience 2 20%
Agricultural and Biological Sciences 1 10%
Business, Management and Accounting 1 10%
Engineering 1 10%
Other 0 0%
Unknown 3 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 November 2017.
All research outputs
#18,575,277
of 23,007,053 outputs
Outputs from Frontiers in Neurorobotics
#583
of 879 outputs
Outputs of similar age
#251,994
of 329,019 outputs
Outputs of similar age from Frontiers in Neurorobotics
#10
of 15 outputs
Altmetric has tracked 23,007,053 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 879 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,019 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.