↓ Skip to main content

An Extended Passive Motion Paradigm for Human-Like Posture and Movement Planning in Redundant Manipulators

Overview of attention for article published in Frontiers in Neurorobotics, November 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An Extended Passive Motion Paradigm for Human-Like Posture and Movement Planning in Redundant Manipulators
Published in
Frontiers in Neurorobotics, November 2017
DOI 10.3389/fnbot.2017.00065
Pubmed ID
Authors

Paolo Tommasino, Domenico Campolo

Abstract

A major challenge in robotics and computational neuroscience is relative to the posture/movement problem in presence of kinematic redundancy. We recently addressed this issue using a principled approach which, in conjunction with nonlinear inverse optimization, allowed capturing postural strategies such as Donders' law. In this work, after presenting this general model specifying it as an extension of the Passive Motion Paradigm, we show how, once fitted to capture experimental postural strategies, the model is actually able to also predict movements. More specifically, the passive motion paradigm embeds two main intrinsic components: joint damping and joint stiffness. In previous work we showed that joint stiffness is responsible for static postures and, in this sense, its parameters are regressed to fit to experimental postural strategies. Here, we show how joint damping, in particular its anisotropy, directly affects task-space movements. Rather than using damping parameters to fit a posteriori task-space motions, we make the a priori hypothesis that damping is proportional to stiffness. This remarkably allows a postural-fitted model to also capture dynamic performance such as curvature and hysteresis of task-space trajectories during wrist pointing tasks, confirming and extending previous findings in literature.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 36%
Researcher 3 12%
Other 2 8%
Student > Bachelor 2 8%
Professor 1 4%
Other 2 8%
Unknown 6 24%
Readers by discipline Count As %
Engineering 14 56%
Computer Science 2 8%
Medicine and Dentistry 1 4%
Psychology 1 4%
Unknown 7 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 December 2017.
All research outputs
#18,577,751
of 23,009,818 outputs
Outputs from Frontiers in Neurorobotics
#583
of 879 outputs
Outputs of similar age
#325,625
of 437,899 outputs
Outputs of similar age from Frontiers in Neurorobotics
#13
of 18 outputs
Altmetric has tracked 23,009,818 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 879 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 437,899 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one is in the 5th percentile – i.e., 5% of its contemporaries scored the same or lower than it.